Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rishi K. Jain is active.

Publication


Featured researches published by Rishi K. Jain.


Journal of Medicinal Chemistry | 2009

1-Amino-4-benzylphthalazines as Orally Bioavailable Smoothened Antagonists with Antitumor Activity

Karen Miller-Moslin; Stefan Peukert; Rishi K. Jain; Michael McEwan; Rajesh Karki; Luis Llamas; Naeem Yusuff; Feng He; Yanhong Li; Yingchuan Sun; Miao Dai; Lawrence Blas Perez; Walter Michael; Tao Sheng; Huangshu Lei; Rui Zhang; Juliet Williams; Aaron Bourret; Arun Ramamurthy; Jing Yuan; Ribo Guo; Melissa Matsumoto; Anthony Vattay; Wieslawa Maniara; Adam Amaral; Marion Dorsch; Joseph F. Kelleher

Abnormal activation of the Hedgehog (Hh) signaling pathway has been linked to several types of human cancers, and the development of small-molecule inhibitors of this pathway represents a promising route toward novel anticancer therapeutics. A cell-based screen performed in our laboratories identified a new class of Hh pathway inhibitors, 1-amino-4-benzylphthalazines, that act via antagonism of the Smoothened receptor. A variety of analogues were synthesized and their structure-activity relationships determined. This optimization resulted in the discovery of high affinity Smoothened antagonists, one of which was further profiled in vivo. This compound displayed a good pharmacokinetic profile and also afforded tumor regression in a genetic mouse model of medulloblastoma.


PLOS ONE | 2015

Englerin A Agonizes the TRPC4/C5 Cation Channels to Inhibit Tumor Cell Line Proliferation.

Cheryl Carson; Pichai Raman; Jennifer Tullai; Lei Xu; Martin Henault; Emily Thomas; Sarita Yeola; Jianmin Lao; Mark McPate; J. Martin Verkuyl; George Marsh; Jason Sarber; Adam Amaral; Scott Bailey; Danuta Lubicka; Helen Pham; Nicolette Miranda; Jian Ding; Hai-Ming Tang; Haisong Ju; Pamela Tranter; Nan Ji; Philipp Krastel; Rishi K. Jain; Andrew M. Schumacher; Joseph Loureiro; Elizabeth George; Giuliano Berellini; Nathan T. Ross; Simon Bushell

Englerin A is a structurally unique natural product reported to selectively inhibit growth of renal cell carcinoma cell lines. A large scale phenotypic cell profiling experiment (CLiP) of englerin A on ¬over 500 well characterized cancer cell lines showed that englerin A inhibits growth of a subset of tumor cell lines from many lineages, not just renal cell carcinomas. Expression of the TRPC4 cation channel was the cell line feature that best correlated with sensitivity to englerin A, suggesting the hypothesis that TRPC4 is the efficacy target for englerin A. Genetic experiments demonstrate that TRPC4 expression is both necessary and sufficient for englerin A induced growth inhibition. Englerin A induces calcium influx and membrane depolarization in cells expressing high levels of TRPC4 or its close ortholog TRPC5. Electrophysiology experiments confirmed that englerin A is a TRPC4 agonist. Both the englerin A induced current and the englerin A induced growth inhibition can be blocked by the TRPC4/C5 inhibitor ML204. These experiments confirm that activation of TRPC4/C5 channels inhibits tumor cell line proliferation and confirms the TRPC4 target hypothesis generated by the cell line profiling. In selectivity assays englerin A weakly inhibits TRPA1, TRPV3/V4, and TRPM8 which suggests that englerin A may bind a common feature of TRP ion channels. In vivo experiments show that englerin A is lethal in rodents near doses needed to activate the TRPC4 channel. This toxicity suggests that englerin A itself is probably unsuitable for further drug development. However, since englerin A can be synthesized in the laboratory, it may be a useful chemical starting point to identify novel modulators of other TRP family channels.


Blood | 2011

Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells

Carla Russo; Ivan Cornella-Taracido; Luisa Galli-Stampino; Rishi K. Jain; Edmund Harrington; Yuko Isome; Simona Tavarini; Chiara Sammicheli; Sandra Nuti; M. Lamine Mbow; Nicholas M. Valiante; John A. Tallarico; Ennio De Gregorio; Elisabetta Soldaini

TLR7 and TLR8 are intracellular sensors activated by single-stranded RNA species generated during viral infections. Various synthetic small molecules can also activate TLR7 or TLR8 or both through an unknown mechanism. Notably, direct interaction between small molecules and TLR7 or TLR8 has never been shown. To shed light on how small molecule agonists target TLRs, we labeled 2 imidazoquinolines, resiquimod and imiquimod, and one adenine-based compound, SM360320, with 2 different fluorophores [5(6) carboxytetramethylrhodamine and Alexa Fluor 488] and monitored their intracellular localization in human plasmacytoid dendritic cells (pDCs). All fluorescent compounds induced the production of IFN-α, TNF-α, and IL-6 and the up-regulation of CD80 and CD86 by pDCs showing they retained TLR7-stimulating activity. Confocal imaging of pDCs showed that, similar to CpG-B, all compounds concentrated in the MHC class II loading compartment (MIIC), identified as lysosome-associated membrane protein 1(+), CD63, and HLA-DR(+) endosomes. Treatment of pDCs with bafilomycin A, an antagonist of the vacuolar-type proton ATPase controlling endosomal acidification, prevented the accumulation of small molecule TLR7 agonists, but not of CpG-B, in the MIIC. These results indicate that a pH-driven concentration of small molecule TLR7 agonists in the MIIC is required for pDC activation.


Analytical Chemistry | 2009

Affinity classification of kinase inhibitors by mass spectrometric methods and validation using standard IC(50) measurements.

Matthias C. Jecklin; David Touboul; Rishi K. Jain; Estee Naggar Toole; John A. Tallarico; Peter Drueckes; Paul Ramage; Renato Zenobi

Protein kinases have emerged as a major drug target in the last years. Since more than 500 kinases are encoded in the human genome, cross-reactivity of a majority of kinase inhibitors causes problems. Tools are required for a rapid classification of inhibitors according to their affinity for a certain target to refine the search for new, more specific lead compounds. Mass spectrometry (MS) is increasingly used in pharmaceutical research and drug discovery to investigate protein-ligand interactions and determination of binding affinities. We present a comparison of different existing nanoelectrospray-MS based methods to quantify binding affinities and qualitatively rank, by competitive experiments, the affinity of several clinical inhibitors. We also present a new competitive method which is derived from our previous work for quantitative assessment of binding strengths (Wortmann et al., J. Mass Spectrom. 2008, 43(5), 600-608). The human kinases studied for this purpose were p38alpha (MAPK14) and LCK (lymphocyte specific kinase), and their interaction with 17 known small molecule kinase inhibitors was probed. Moreover, we present a new method to differentiate type I from type II inhibitors (Liu, Y.; Gray, N. S. Nat. Chem. Biol. 2006, 2(7), 358-364) based on a kinetic experiment with direct MS read-out of the noncovalent complex between the human kinase and the inhibitor. This method was successfully applied to p38alpha binding to BIRB796, as well as to a BIRB796 analogue. Quantitative determination of the binding strength is also described. The results of our competitive experiments for the affinity classification of different inhibitors, as well as the results for the kinetic study, are in good agreement with IC(50) measurements and data found in the literature.


Bioorganic & Medicinal Chemistry Letters | 2009

Identification and structure–activity relationships of ortho-biphenyl carboxamides as potent Smoothened antagonists inhibiting the Hedgehog signaling pathway

Stefan Peukert; Rishi K. Jain; Adrian Geisser; Yingchuan Sun; Rui Zhang; Aaron Bourret; Adam Carlson; Jennifer DaSilva; Arun Ramamurthy; Joseph F. Kelleher

Ortho-biphenyl carboxamides, originally prepared as inhibitors of microsomal triglyceride transfer protein (MTP) have been identified as novel inhibitors of the Hedgehog signaling pathway. Structure-activity relationship studies for this class of compounds reduced MTP inhibitory activity and led to low nanomolar Hedgehog inhibitors. Binding assays revealed that the compounds act as antagonists of Smoothened and show cross-reactivity for both the human and mouse receptor.


ACS Medicinal Chemistry Letters | 2014

Discovery of 2-Pyridylpyrimidines as the First Orally Bioavailable GPR39 Agonists

Stefan Peukert; Richard Hughes; Jill Nunez; Guo He; Zhao Yan; Rishi K. Jain; Luis Llamas; Sarah J Luchansky; Adam Carlson; Guiqing Liang; Vidya Kunjathoor; Mike Pietropaolo; Jeffrey Shapiro; Anja Castellana; Xiaoping Wu; Avirup Bose

The identification of highly potent and orally bioavailable GPR39 agonists is reported. Compound 1, found in a phenotypic screening campaign, was transformed into compound 2 with good activity on both the rat and human GPR39 receptor. This compound was further optimized to improve ligand efficiency and pharmacokinetic properties to yield GPR39 agonists for the potential oral treatment of type 2 diabetes. Thus, compound 3 is the first potent GPR39 agonist (EC50s ≤ 1 nM for human and rat receptor) that is orally bioavailable in mice and robustly induced acute GLP-1 levels.


eLife | 2015

Ternatin and improved synthetic variants kill cancer cells by targeting the elongation factor-1A ternary complex

Jordan D Carelli; Steven G Sethofer; Geoffrey A. Smith; Howard R. Miller; Jillian L Simard; William C. Merrick; Rishi K. Jain; Nathan T. Ross; Jack Taunton

Cyclic peptide natural products have evolved to exploit diverse protein targets, many of which control essential cellular processes. Inspired by a series of cyclic peptides with partially elucidated structures, we designed synthetic variants of ternatin, a cytotoxic and anti-adipogenic natural product whose molecular mode of action was unknown. The new ternatin variants are cytotoxic toward cancer cells, with up to 500-fold greater potency than ternatin itself. Using a ternatin photo-affinity probe, we identify the translation elongation factor-1A ternary complex (eEF1A·GTP·aminoacyl-tRNA) as a specific target and demonstrate competitive binding by the unrelated natural products, didemnin and cytotrienin. Mutations in domain III of eEF1A prevent ternatin binding and confer resistance to its cytotoxic effects, implicating the adjacent hydrophobic surface as a functional hot spot for eEF1A modulation. We conclude that the eukaryotic elongation factor-1A and its ternary complex with GTP and aminoacyl-tRNA are common targets for the evolution of cytotoxic natural products. DOI: http://dx.doi.org/10.7554/eLife.10222.001


ACS Chemical Biology | 2016

Conversion of a Single Polypharmacological Agent into Selective Bivalent Inhibitors of Intracellular Kinase Activity

Carrie M. Gower; Jason R. Thomas; Edmund Harrington; Jason Murphy; Matthew E. K. Chang; Ivan Cornella-Taracido; Rishi K. Jain; Markus Schirle; Dustin J. Maly

Loss-of-function studies are valuable for elucidating kinase function and the validation of new drug targets. While genetic techniques, such as RNAi and genetic knockouts, are highly specific and easy to implement, in many cases post-translational perturbation of kinase activity, specifically pharmacological inhibition, is preferable. However, due to the high degree of structural similarity between kinase active sites and the large size of the kinome, identification of pharmacological agents that are sufficiently selective to probe the function of a specific kinase of interest is challenging, and there is currently no systematic method for accomplishing this goal. Here, we present a modular chemical genetic strategy that uses antibody mimetics as highly selective targeting components of bivalent kinase inhibitors. We demonstrate that it is possible to confer high kinase selectivity to a promiscuous ATP-competitive inhibitor by tethering it to an antibody mimetic fused to the self-labeling protein SNAPtag. With this approach, a potent bivalent inhibitor of the tyrosine kinase Abl was generated. Profiling in complex cell lysates, with competition-based quantitative chemical proteomics, revealed that this bivalent inhibitor possesses greatly enhanced selectivity for its target, BCR-Abl, in K562 cells. Importantly, we show that both components of the bivalent inhibitor can be assembled in K562 cells to block the ability of BCR-Abl to phosphorylate a direct cellular substrate. Finally, we demonstrate the generality of using antibody mimetics as components of bivalent inhibitors by generating a reagent that is selective for the activated state of the serine/threonine kinase ERK2.


Archive | 2017

A Photoaffinity Labeling-Based Chemoproteomics Strategy for Unbiased Target Deconvolution of Small Molecule Drug Candidates

Jason R. Thomas; Scott M. Brittain; Jennifer Lipps; Luis Llamas; Rishi K. Jain; Markus Schirle

The combination of photoaffinity labeling (PAL) and quantitative chemoproteomics enables the comprehensive, unbiased determination of protein interaction profiles to support target identification of bioactive small molecules. This approach is amenable to cells in culture and compatible with pharmacologically relevant transmembrane target classes like G-protein coupled receptors and ions channels which have been notoriously hard to access by conventional chemoproteomics approaches. Here, we describe a strategy that combines PAL probe titration and competition with excess parental compounds with the goal of enabling the identification of specific interactors as well as assessing the functional relevance of a binding event for the phenotype under investigation.


Proteome Science | 2016

Examining the influence of specificity ligands and ATP-competitive ligands on the overall effectiveness of bivalent kinase inhibitors

Margaret L. Wong; Jason Murphy; Edmund Harrington; Carrie M. Gower; Rishi K. Jain; Markus Schirle; Jason R. Thomas

BackgroundIdentifying selective kinase inhibitors remains a major challenge. The design of bivalent inhibitors provides a rational strategy for accessing potent and selective inhibitors. While bivalent kinase inhibitors have been successfully designed, no comprehensive assessment of affinity and selectivity for a series of bivalent inhibitors has been performed. Here, we present an evaluation of the structure activity relationship for bivalent kinase inhibitors targeting ABL1.MethodsVarious SNAPtag constructs bearing different specificity ligands were expressed in vitro. Bivalent inhibitor formation was accomplished by synthesizing individual ATP-competitive kinase inhibitors containing a SNAPtag targeting moiety, enabling the spontaneous self-assembly of the bivalent inhibitor. Assembled bivalent inhibitors were incubated with K562 lysates, and then subjected to affinity enrichment using various ATP-competitive inhibitors immobilized to sepharose beads. Resulting eluents were analyzed using Tandem Mass Tag (TMT) labeling and two-dimensional liquid chromatography-tandem mass spectrometry (2D–LC-MS/MS). Relative binding affinity of the bivalent inhibitor was determined by calculating the concentration at which 50% of a given kinase remained bound to the affinity matrix.ResultsThe profiling of three parental ATP-competitive inhibitors and nine SNAPtag conjugates led to the identification of 349 kinase proteins. In all cases, the bivalent inhibitors exhibited enhanced binding affinity and selectivity for ABL1 when compared to the parental compound conjugated to SNAPtag alone. While the rank order of binding affinity could be predicted by considering the binding affinities of the individual specificity ligands, the resulting affinity of the assembled bivalent inhibitor was not predictable. The results from this study suggest that as the potency of the ATP-competitive ligand increases, the contribution of the specificity ligand towards the overall binding affinity of the bivalent inhibitor decreases. However, the affinity of the specificity components in its interaction with the target is essential for achieving selectivity.ConclusionThrough comprehensive chemical proteomic profiling, this work provides the first insight into the influence of ATP-competitive and specificity ligands binding to their intended target on a proteome-wide scale. The resulting data suggest a subtle interplay between the ATP-competitive and specificity ligands that cannot be accounted for by considering the specificity or affinity of the individual components alone.

Collaboration


Dive into the Rishi K. Jain's collaboration.

Researchain Logo
Decentralizing Knowledge