Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edmund Harrington is active.

Publication


Featured researches published by Edmund Harrington.


Nature Cell Biology | 2014

Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo

William E. Dowdle; Beat Nyfeler; Jane Nagel; Robert Elling; Shanming Liu; Ellen Triantafellow; Suchithra Menon; Zuncai Wang; Ayako Honda; Gwynn Pardee; John Cantwell; Catherine Luu; Ivan Cornella-Taracido; Edmund Harrington; Peter Fekkes; Hong Lei; Qing Fang; Mary Ellen Digan; Debra Burdick; Andrew F. Powers; Stephen B. Helliwell; Simon D’Aquin; Julie Bastien; Henry Wang; Dmitri Wiederschain; Jenny Kuerth; Philip Bergman; David Schwalb; Jason R. Thomas; Savuth Ugwonali

Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4−/− mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.


Blood | 2011

Small molecule Toll-like receptor 7 agonists localize to the MHC class II loading compartment of human plasmacytoid dendritic cells

Carla Russo; Ivan Cornella-Taracido; Luisa Galli-Stampino; Rishi K. Jain; Edmund Harrington; Yuko Isome; Simona Tavarini; Chiara Sammicheli; Sandra Nuti; M. Lamine Mbow; Nicholas M. Valiante; John A. Tallarico; Ennio De Gregorio; Elisabetta Soldaini

TLR7 and TLR8 are intracellular sensors activated by single-stranded RNA species generated during viral infections. Various synthetic small molecules can also activate TLR7 or TLR8 or both through an unknown mechanism. Notably, direct interaction between small molecules and TLR7 or TLR8 has never been shown. To shed light on how small molecule agonists target TLRs, we labeled 2 imidazoquinolines, resiquimod and imiquimod, and one adenine-based compound, SM360320, with 2 different fluorophores [5(6) carboxytetramethylrhodamine and Alexa Fluor 488] and monitored their intracellular localization in human plasmacytoid dendritic cells (pDCs). All fluorescent compounds induced the production of IFN-α, TNF-α, and IL-6 and the up-regulation of CD80 and CD86 by pDCs showing they retained TLR7-stimulating activity. Confocal imaging of pDCs showed that, similar to CpG-B, all compounds concentrated in the MHC class II loading compartment (MIIC), identified as lysosome-associated membrane protein 1(+), CD63, and HLA-DR(+) endosomes. Treatment of pDCs with bafilomycin A, an antagonist of the vacuolar-type proton ATPase controlling endosomal acidification, prevented the accumulation of small molecule TLR7 agonists, but not of CpG-B, in the MIIC. These results indicate that a pH-driven concentration of small molecule TLR7 agonists in the MIIC is required for pDC activation.


Methods of Molecular Biology | 2012

Kinase Inhibitor Profiling Using Chemoproteomics

Markus Schirle; Eugene C. Petrella; Scott M. Brittain; David Schwalb; Edmund Harrington; Ivan Cornella-Taracido; John A. Tallarico

Quantitative chemoproteomics has recently emerged as an experimental approach to determine protein interaction profiles of small molecules in a given cell line or tissue. In contrast to standard biochemical and biophysical kinase assays, application of this method to kinase inhibitors determines compound binding to endogenously expressed kinases under conditions approximating the physiological situation with regard to the molecular state of the kinase and presence of required cofactors and regulatory proteins. Using a dose-dependent, competition-based experimental design in combination with quantitative mass spectrometry approaches, such as the use of tandem mass tags (TMT) for isobaric labeling described here, allows to rank-order interactions of inhibitors to kinase by binding affinity.


Analytical Biochemistry | 2012

Detecting S-adenosyl-l-methionine-induced conformational change of a histone methyltransferase using a homogeneous time-resolved fluorescence-based binding assay

Ying Lin; Hong Fan; Mathias Frederiksen; Kehao Zhao; Lei Jiang; Zhaofu Wang; Shaolian Zhou; Weihui Guo; Jun Gao; Shu Li; Edmund Harrington; Peter Meier; Clemens Scheufler; Yao-Chang Xu; Peter Atadja; Chris Lu; En Li; X. Justin Gu

A homogeneous time-resolved fluorescence (HTRF)-based binding assay has been established to measure the binding of the histone methyltransferase (HMT) G9a to its inhibitor CJP702 (a biotin analog of the known peptide-pocket inhibitor, BIX-01294). This assay was used to characterize G9a inhibitors. As expected, the peptide-pocket inhibitors decreased the G9a-CJP702 binding signal in a concentration-dependent manner. In contrast, the S-adenosyl-L-methionine (SAM)-pocket compounds, SAM and sinefungin, significantly increased the G9a-CJP702 binding signal, whereas S-adenosyl-L-homocysteine (SAH) showed minimal effect. Enzyme kinetic studies showed that CJP702 is an uncompetitive inhibitor (vs. SAM) that has a strong preference for the E:SAM form of the enzyme. Other data presented suggest that the SAM/sinefungin-induced increase in the HTRF signal is secondary to an increased E:SAM or E:sinefungin concentration. Thus, the G9a-CJP702 binding assay not only can be used to characterize the peptide-pocket inhibitors but also can detect the subtle conformational differences induced by the binding of different SAM-pocket compounds. To our knowledge, this is the first demonstration of using an uncompetitive inhibitor as a probe to monitor the conformational change induced by compound binding with an HTRF assay.


ACS Chemical Biology | 2016

Conversion of a Single Polypharmacological Agent into Selective Bivalent Inhibitors of Intracellular Kinase Activity

Carrie M. Gower; Jason R. Thomas; Edmund Harrington; Jason Murphy; Matthew E. K. Chang; Ivan Cornella-Taracido; Rishi K. Jain; Markus Schirle; Dustin J. Maly

Loss-of-function studies are valuable for elucidating kinase function and the validation of new drug targets. While genetic techniques, such as RNAi and genetic knockouts, are highly specific and easy to implement, in many cases post-translational perturbation of kinase activity, specifically pharmacological inhibition, is preferable. However, due to the high degree of structural similarity between kinase active sites and the large size of the kinome, identification of pharmacological agents that are sufficiently selective to probe the function of a specific kinase of interest is challenging, and there is currently no systematic method for accomplishing this goal. Here, we present a modular chemical genetic strategy that uses antibody mimetics as highly selective targeting components of bivalent kinase inhibitors. We demonstrate that it is possible to confer high kinase selectivity to a promiscuous ATP-competitive inhibitor by tethering it to an antibody mimetic fused to the self-labeling protein SNAPtag. With this approach, a potent bivalent inhibitor of the tyrosine kinase Abl was generated. Profiling in complex cell lysates, with competition-based quantitative chemical proteomics, revealed that this bivalent inhibitor possesses greatly enhanced selectivity for its target, BCR-Abl, in K562 cells. Importantly, we show that both components of the bivalent inhibitor can be assembled in K562 cells to block the ability of BCR-Abl to phosphorylate a direct cellular substrate. Finally, we demonstrate the generality of using antibody mimetics as components of bivalent inhibitors by generating a reagent that is selective for the activated state of the serine/threonine kinase ERK2.


Scientific Reports | 2017

Identification of a novel NAMPT inhibitor by CRISPR/Cas9 chemogenomic profiling in mammalian cells

David Estoppey; Jeffrey Hewett; Chantale T. Guy; Edmund Harrington; Jason R Thomas; Markus Schirle; Rachel Cuttat; Annick Waldt; Bertran Gerrits; Zinger Yang; Sven Schuierer; Xuewen Pan; Kevin Xie; Walter Carbone; Judith Knehr; Alicia Lindeman; Carsten Russ; Elizabeth Frias; Gregory R. Hoffman; Malini Varadarajan; Nadire Ramadan; John S. Reece-Hoyes; Qiong Wang; Xin Chen; Gregory McAllister; Guglielmo Roma; Tewis Bouwmeester; Dominic Hoepfner

Chemogenomic profiling is a powerful and unbiased approach to elucidate pharmacological targets and the mechanism of bioactive compounds. Until recently, genome-wide, high-resolution experiments of this nature have been limited to fungal systems due to lack of mammalian genome-wide deletion collections. With the example of a novel nicotinamide phosphoribosyltransferase (NAMPT) inhibitor, we demonstrate that the CRISPR/Cas9 system enables the generation of transient homo- and heterozygous deletion libraries and allows for the identification of efficacy targets and pathways mediating hypersensitivity and resistance relevant to the compound mechanism of action.


Proteome Science | 2016

Examining the influence of specificity ligands and ATP-competitive ligands on the overall effectiveness of bivalent kinase inhibitors

Margaret L. Wong; Jason Murphy; Edmund Harrington; Carrie M. Gower; Rishi K. Jain; Markus Schirle; Jason R. Thomas

BackgroundIdentifying selective kinase inhibitors remains a major challenge. The design of bivalent inhibitors provides a rational strategy for accessing potent and selective inhibitors. While bivalent kinase inhibitors have been successfully designed, no comprehensive assessment of affinity and selectivity for a series of bivalent inhibitors has been performed. Here, we present an evaluation of the structure activity relationship for bivalent kinase inhibitors targeting ABL1.MethodsVarious SNAPtag constructs bearing different specificity ligands were expressed in vitro. Bivalent inhibitor formation was accomplished by synthesizing individual ATP-competitive kinase inhibitors containing a SNAPtag targeting moiety, enabling the spontaneous self-assembly of the bivalent inhibitor. Assembled bivalent inhibitors were incubated with K562 lysates, and then subjected to affinity enrichment using various ATP-competitive inhibitors immobilized to sepharose beads. Resulting eluents were analyzed using Tandem Mass Tag (TMT) labeling and two-dimensional liquid chromatography-tandem mass spectrometry (2D–LC-MS/MS). Relative binding affinity of the bivalent inhibitor was determined by calculating the concentration at which 50% of a given kinase remained bound to the affinity matrix.ResultsThe profiling of three parental ATP-competitive inhibitors and nine SNAPtag conjugates led to the identification of 349 kinase proteins. In all cases, the bivalent inhibitors exhibited enhanced binding affinity and selectivity for ABL1 when compared to the parental compound conjugated to SNAPtag alone. While the rank order of binding affinity could be predicted by considering the binding affinities of the individual specificity ligands, the resulting affinity of the assembled bivalent inhibitor was not predictable. The results from this study suggest that as the potency of the ATP-competitive ligand increases, the contribution of the specificity ligand towards the overall binding affinity of the bivalent inhibitor decreases. However, the affinity of the specificity components in its interaction with the target is essential for achieving selectivity.ConclusionThrough comprehensive chemical proteomic profiling, this work provides the first insight into the influence of ATP-competitive and specificity ligands binding to their intended target on a proteome-wide scale. The resulting data suggest a subtle interplay between the ATP-competitive and specificity ligands that cannot be accounted for by considering the specificity or affinity of the individual components alone.


Journal of Proteome Research | 2009

Use of ligand based models for protein domains to predict novel molecular targets and applications to triage affinity chromatography data.

Andreas Bender; Dmitri Mikhailov; Meir Glick; Josef Scheiber; John W. Davies; Stephen Cleaver; Stephen Marshall; John A. Tallarico; Edmund Harrington; Ivan Cornella-Taracido; Jeremy L. Jenkins


Archive | 2011

Bi-heteroaryl compounds as Vps34 inhibitors

Ivan Cornella Taracido; Edmund Harrington; Ayako Honda; Erin P. Keaney


Archive | 2007

Heteroaryl-heteroaryl compounds as cdk inhibitors for the treatment of cancer, inflammation and viral infections

Rohan Eric John Beckwith; Daniel Curtis; Edmund Harrington; Jürgen Hans-Hermann Hinrichs; John A. Tallarico

Collaboration


Dive into the Edmund Harrington's collaboration.

Researchain Logo
Decentralizing Knowledge