Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Mota is active.

Publication


Featured researches published by Rita Mota.


Systematic and Applied Microbiology | 2012

Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: A polyphasic study

Ângela Brito; Vitor Ramos; Rui Seabra; Arlete Santos; Catarina L. Santos; Miguel Lopo; Sérgio Ferreira; António Martins; Rita Mota; Bárbara Frazão; Rosário Martins; Vitor Vasconcelos; Paula Tamagnini

Cyanobacteria are important primary producers, and many are able to fix atmospheric nitrogen playing a key role in the marine environment. However, not much is known about the diversity of cyanobacteria in Portuguese marine waters. This paper describes the diversity of 60 strains isolated from benthic habitats in 9 sites (intertidal zones) on the Portuguese South and West coasts. The strains were characterized by a morphological study (light and electron microscopy) and by a molecular characterization (partial 16S rRNA, nifH, nifK, mcyA, mcyE/ndaF, sxtI genes). The morphological analyses revealed 35 morphotypes (15 genera and 16 species) belonging to 4 cyanobacterial Orders/Subsections. The dominant groups among the isolates were the Oscillatoriales. There is a broad congruence between morphological and molecular assignments. The 16S rRNA gene sequences of 9 strains have less than 97% similarity compared to the sequences in the databases, revealing novel cyanobacterial diversity. Phylogenetic analysis, based on partial 16S rRNA gene sequences showed at least 12 clusters. One-third of the isolates are potential N(2)-fixers, as they exhibit heterocysts or the presence of nif genes was demonstrated by PCR. Additionally, no conventional freshwater toxins genes were detected by PCR screening.


Carbohydrate Polymers | 2013

Production and characterization of extracellular carbohydrate polymer from Cyanothece sp. CCY 0110

Rita Mota; R. B. Guimaraes; Zsófia Büttel; Federico Rossi; Giovanni Colica; Carla J. S. M. Silva; Carla Santos; Luís Gales; Andrea Zille; Roberto De Philippis; Sara Pereira; Paula Tamagnini

Cyanobacterial extracellular polymeric substances (EPS) are heteropolysaccharides that possess characteristics suitable for industrial applications, notably a high number of different monomers, strong anionic nature and high hydrophobicity. However, systematic studies that unveil the conditions influencing EPS synthesis and/or its characteristics are mandatory. In this work, Cyanothece sp. CCY 0110 was used as model organism. Our results revealed that this strain is among the most efficient EPS producers, and that the amount of RPS (released polysaccharides) is mainly related to the number of cells, rather than to the amount produced by each cell. Light was the key parameter, with high light intensity enhancing significantly RPS production (reaching 1.8 g L(-1)), especially in the presence of combined nitrogen. The data showed that RPS are composed by nine different monosaccharides (including two uronic acids), the presence of sulfate groups and peptides, and that the polymer is remarkably thermostable and amorphous in nature.


Parasitology Research | 2012

Infection levels and diversity of anisakid nematodes in blackspot seabream, Pagellus bogaraveo, from Portuguese waters

Margarida Hermida; Rita Mota; Catarina C. Pacheco; Catarina L. Santos; Cristina Cruz; Aurélia Saraiva; Paula Tamagnini

The blackspot seabream, Pagellus bogaraveo, is a sparid fish of great economic importance in the northeast Atlantic. The main aim of this work was to assess the infection levels and diversity of anisakid nematodes parasitizing P. bogaraveo from Portuguese waters. The anisakid larvae were identified by polymerase chain reaction-restriction fragment length polymorphism analysis and ten different patterns were observed, four of which were not previously reported in the literature. Moreover, several species were detected for the first time in this host: Anisakis simplex × Anisakis pegreffii hybrids, Anisakis ziphidarum, Anisakis typica, Anisakis physeteris, as well as three undescribed anisakids Anisakis sp. PB-2009, Anisakis sp. PB-2010, and Contracaecum sp. PB-2010. The ITS1-5.8S-ITS2 region was sequenced and analyzed phylogenetically, revealing that our anisakids were distributed by the two distinct clades reported previously, corresponding to the two recognized larval morphotypes. Moreover, a group of organisms, including our specimens from Madeira and the previously reported Anisakis sp. HC-2005, cluster together and seem to belong to clade I. A certain degree of intraspecific diversity was also detected. Samples from mainland waters had the highest infection levels and were dominated by A. pegreffii. Madeira had the highest diversity overall, dominated by Anisakis sp. PB-2010. Fish from the Azores had the lowest infection levels, and the species with the highest relative abundance was A. physeteris. The anisakid nematode communities were relatively similar in mainland waters but very distinct in both the Azores and Madeira islands, suggesting the existence of at least three different stocks of P. bogaraveo in the northeast Atlantic.


Journal of Proteomics | 2015

Effects of heavy metals on Cyanothece sp. CCY 0110 growth, extracellular polymeric substances (EPS) production, ultrastructure and protein profiles

Rita Mota; Sara Pereira; Marianna Meazzini; Rui Fernandes; Arlete Santos; Caroline A. Evans; Roberto De Philippis; Phillip C. Wright; Paula Tamagnini

UNLABELLED The effects of several heavy metals on the growth/survival, EPS production, ultrastructure and protein profiles of the highly efficient extracellular polymeric substances (EPS)-producer cyanobacterium Cyanothece sp. CCY 0110 were evaluated. Our results clearly show that each heavy metal affects the cells in a particular manner, triggering distinctive responses. Concerning chronic exposure, cells were more affected by Cu(2+) followed by Pb(2+), Cd(2+), and Li(+). The presence of metal leads to remarkable ultrastructural changes, mainly at the thylakoid level. The comparison of the proteomes (iTRAQ) allowed to follow the stress responses and to distinguish specific effects related to the time of exposure and/or the concentration of an essential (Cu(2+)) and a non-essential (Cd(2+)) metal. The majority of the proteins identified and with fold changes were associated with photosynthesis, CO2 fixation and carbohydrate metabolism, translation, and nitrogen and amino acid metabolism. Moreover, our results indicate that during chronic exposure to sub-lethal concentrations of Cu(2+), the cells tune down their metabolic rate to invest energy in the activation of detoxification mechanisms, which eventually result in a remarkable recovery. In contrast, the toxic effects of Cd(2+) are cumulative. Unexpectedly, the amount of released polysaccharides (RPS) was not enhanced by the presence of heavy metals. BIOLOGICAL SIGNIFICANCE This work shows the holistic effects of different heavy metals on the cells of the highly efficient EPS-producer the cyanobacterium Cyanothece sp. CCY 0110. The growth/survival, EPS production, ultrastructure, protein profiles and stress response were evaluated. The knowledge generated by this study will contribute to the implementation of heavy-metal removal systems based on cyanobacteria EPS or their isolated polymers.


Environmental Microbiology | 2015

HesF, an exoprotein required for filament adhesion and aggregation in Anabaena sp. PCC 7120

Paulo J. Oliveira; Filipe Pinto; Catarina C. Pacheco; Rita Mota; Paula Tamagnini

Here, we report on the identification and characterization of a protein (Alr0267) named HesF, found in the extracellular milieu of Anabaena sp. PCC 7120 grown diazotrophically. hesF was found to be highly upregulated upon transition from non-nitrogen-fixing to nitrogen-fixing conditions, and the highest transcript levels were detected towards the end of the heterocyst differentiation process. The hesF promoter drives transcription of the gene in heterocysts only, and both NtcA and HetR are essential for the genes in vivo activation. An examination of HesFs translocation showed that the secretion system is neither heterocyst-specific nor dependent on nitrogen-fixing conditions. Furthermore, HesF was found to be a type I secretion system substrate, since an HgdD mutant failed to secrete HesF. Several analyses revealed that a HesF minus mutant strain lacks the heterocyst-specific polysaccharide fibrous layer, accumulates high amounts of polysaccharides in the medium and that HesF is essential for the typical aggregation phenotype in diazotrophic conditions. Thus, we propose that HesF is a carbohydrate-binding exoprotein that plays a role in maintaining the heterocyst cell wall structure. A combination of and possibly interaction between HesF and heterocyst-specific polysaccharides seems to be responsible for filament adhesion and culture aggregation in heterocyst-forming cyanobacteria.


Scientific Reports | 2015

Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria.

Sara Pereira; Rita Mota; Cristina Vieira; Jorge Vieira; Paula Tamagnini

Many cyanobacteria produce extracellular polymeric substances (EPS) with particular characteristics (e.g. anionic nature and presence of sulfate) that make them suitable for industrial processes such as bioremediation of heavy metals or thickening, suspending or emulsifying agents. Nevertheless, their biosynthetic pathway(s) are still largely unknown, limiting their utilization. In this work, a phylum-wide analysis of genes/proteins putatively involved in the assembly and export of EPS in cyanobacteria was performed. Our results demonstrated that most strains harbor genes encoding proteins related to the three main pathways: Wzy-, ABC transporter-, and Synthase-dependent, but often not the complete set defining one pathway. Multiple gene copies are mainly correlated to larger genomes, and the strains with reduced genomes (e.g. the clade of marine unicellular Synechococcus and Prochlorococcus), seem to have lost most of the EPS-related genes. Overall, the distribution of the different genes/proteins within the cyanobacteria phylum raises the hypothesis that cyanobacterial EPS production may not strictly follow one of the pathways previously characterized. Moreover, for the proteins involved in EPS polymerization, amino acid patterns were defined and validated constituting a novel and robust tool to identify proteins with similar functions and giving a first insight to which polymer biosynthesis they are related to.


Molecular Phylogenetics and Evolution | 2017

Description of new genera and species of marine cyanobacteria from the Portuguese Atlantic coast

Ângela Brito; Vitor Ramos; Rita Mota; Steeve Lima; Arlete Santos; Jorge Vieira; Cristina P. Vieira; Jan Kaštovský; Vitor Vasconcelos; Paula Tamagnini

Aiming at increasing the knowledge on marine cyanobacteria from temperate regions, we previously isolated and characterized 60 strains from the Portuguese foreshore and evaluate their potential to produce secondary metabolites. About 15% of the obtained 16S rRNA gene sequences showed less than 97% similarity to sequences in the databases revealing novel biodiversity. Herein, seven of these strains were extensively characterized and their classification was re-evaluated. The present study led to the proposal of five new taxa, three genera (Geminobacterium, Lusitaniella, and Calenema) and two species (Hyella patelloides and Jaaginema litorale). Geminobacterium atlanticum LEGE 07459 is a chroococcalean that shares morphological characteristics with other unicellular cyanobacterial genera but has a distinct phylogenetic position and particular ultrastructural features. The description of the Pleurocapsales Hyella patelloides LEGE 07179 includes novel molecular data for members of this genus. The filamentous isolates of Lusitaniella coriacea - LEGE 07167, 07157 and 06111 - constitute a very distinct lineage, and seem to be ubiquitous on the Portuguese coast. Jaaginema litorale LEGE 07176 has distinct characteristics compared to their marine counterparts, and our analysis indicates that this genus is polyphyletic. The Synechococcales Calenema singularis possess wider trichomes than Leptolyngbya, and its phylogenetic position reinforces the establishment of this new genus.


Applied Microbiology and Biotechnology | 2016

Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: interactions between metals and RPS binding sites.

Rita Mota; Federico Rossi; Luisa Andrenelli; Sara Pereira; Roberto De Philippis; Paula Tamagnini

Bioremediation of heavy metals using microorganisms can be advantageous compared to conventional physicochemical methods due to the use of renewable resources and efficiencies of removal particularly cations at low concentrations. In this context, cyanobacteria/cyanobacterial extracellular polymeric substances (EPS) emerge as a valid alternative due to the anionic nature and particular composition of these polymers. In this work, various culture fractions of the unicellular cyanobacterium Cyanothece sp. CCY 0110 were employed in bioremoval assays using three of the most common heavy metal pollutants in water bodies—copper, cadmium, and lead—separately or in combined systems. Our study showed that the released polysaccharides (RPS) were the most efficient fraction, removing the metal(s) by biosorption. Therefore, this polymer was subsequently used to evaluate the interactions between the metals/RPS binding sites using SEM-EDX, ICP-OES, and FTIR. Acid and basic pretreatments applied to the polymer further improve the process efficiency, and the exposure to an alkaline solution seems to alter the RPS conformation. The differences observed in the specific metal bioremoval seem to be mainly due to the RPS organic functional groups available, mainly carboxyl and hydroxyl, than to an ion exchange mechanism. Considering that Cyanothece is a highly efficient RPS-producer and that RPS can be easily separated from the culture, immobilized or confined, this polymer can be advantageous for the establishment/improvement of heavy metal removal systems.


Advances in Botanical Research | 2013

Assembly and Export of Extracellular Polymeric Substances (EPS) in Cyanobacteria: A Phylogenomic Approach

Sara Pereira; Rita Mota; Catarina L. Santos; Roberto De Philippis; Paula Tamagnini

Many cyanobacterial strains produce extracellular polymeric substances (EPS), mainly composed of polysaccharides that can remain associated to the cell or be released into the surrounding environment (released polysaccharides (RPS)). The particular characteristics of these EPS, such as the presence of two different uronic acids, sulphate groups and high number of different monosaccharides (up to 13), make them very promising for biotechnological applications. Despite the increasing interest in these polymers, the information about their biosynthetic pathways is still limited. Studies performed in other bacteria revealed that the mechanisms of EPS assembly and export are relatively conserved, generally following the Wzy-dependent or the ABC-dependent pathways, which require the involvement of polysaccharide copolymerase (PCP) and outer membrane polysaccharide export (OPX) proteins. Our previous studies revealed that in cyanobacteria, the genes encoding these proteins occur in multiple copies, scattered throughout the genome, either isolated or in small clusters. However, it is necessary to identify other genes that may be related to this process, understand their genomic distribution, and reconstruct their evolutionary history. The data gathered here provide a first insight on the phylogenetic history of the EPS-related genes, and constitute a robust basis for subsequent studies aiming to optimize EPS production in cyanobacteria.


Data in Brief | 2015

Differential proteomes of the cyanobacterium Cyanothece sp. CCY 0110 upon exposure to heavy metals.

Rita Mota; Sara Pereira; Marianna Meazzini; Rui Fernandes; Arlete Santos; Caroline A. Evans; Roberto De Philippis; Phillip C. Wright; Paula Tamagnini

The proteomes of the highly efficient extracellular polymeric substances (EPS)-producer cyanobacterium Cyanothece sp. CCY 0110, grown in medium supplemented with an essential metal (Cu2+) or a non-essential metal (Cd2+),were compared using iTRAQ technology. The data were obtained within a larger study that evaluated the overall effects of different heavy metals on growth/survival, EPS production and ultrastructure of this cyanobacterium [1]. To allow a broader understanding of the strategies triggered to coupe with toxic effects of the metals, Cyanothece′s proteomes were evaluated after chronic and acute exposure to Cu2+ and Cd2+ in two independent 8-plex iTRAQ studies. For the chronic exposure 0.1 mg/l of Cu2+ or 5 mg/l of Cd2+ were used for 10 and 20 days, while in the acute experiments the cells were exposed to 10× these concentrations for 24 h. 202 and 268 proteins were identified and quantified for studies 1 (Cu2+) and 2 (Cd2+), respectively. The majority of the proteins with significant fold changes were associated with photosynthesis, CO2 fixation and carbohydrate metabolism, translation, and nitrogen and amino acid metabolism.

Collaboration


Dive into the Rita Mota's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Catarina L. Santos

Instituto de Biologia Molecular e Celular

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge