Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Musetti is active.

Publication


Featured researches published by Rita Musetti.


Phytopathology | 2004

Recovery in Apple Trees Infected with the Apple Proliferation Phytoplasma: An Ultrastructural and Biochemical Study

Rita Musetti; L. Sanità di Toppi; P. Ermacora; M. A. Favali

ABSTRACT Localization of hydrogen peroxide (H(2)O(2)) and the roles of peroxidases, malondialdehyde, and reduced glutathione in three apple cultivars were compared in healthy trees, trees infected with apple proliferation phytoplasma (APP), and trees that had recovered from the infection. In recovered apple trees, symptoms of the disease and the pathogen had disappeared from the canopy, but phytoplasmas remained in the roots. H(2)O(2) was detected cytochemically by its reaction with cerium chloride to produce electron-dense deposits of cerium perhydroxides.H(2)O(2) occurred in the plasmalemma of the phloem of leaves of recovered apple trees, but not in healthy or APP-infected leaves. In all cultivars, the peroxidase activity detected in tissue from APP-diseased trees was greater than or equal to that of tissue from recovered trees, which equaled or exceeded that of tissue from healthy trees, at two sampling times (May and September). In contrast, the glutathione content of leaves decreased in the reverse order. More malondialdehyde was observed in leaves from recovered trees than in leaves from healthy or APP-infected trees in three of six cultivar-date combinations; in the other three combinations, the malondialdehyde contents of leaves from healthy, infected, and recovered trees were not significantly different from one another. The results suggest that some components of the oxidant-scavenging system in recovered leaves are not very active, leading to an overproduction of H(2)O(2) and, possibly, to a membrane lipid peroxidation.The production of H(2)O(2) appears to be involved in counteracting pathogen virulence.


Journal of Experimental Botany | 2014

Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway

Aart J. E. van Bel; Alexandra C. U. Furch; Torsten Will; Stefanie V. Buxa; Rita Musetti; Jens B. Hafke

We explored the idea of whether electropotential waves (EPWs) primarily act as vehicles for systemic spread of Ca(2+) signals. EPW-associated Ca(2+) influx may trigger generation and amplification of countless long-distance signals along the phloem pathway given the fact that gating of Ca(2+)-permeable channels is a universal response to biotic and abiotic challenges. Despite fundamental differences, both action and variation potentials are associated with a sudden Ca(2+) influx. Both EPWs probably disperse in the lateral direction, which could be of essential functional significance. A vast set of Ca(2+)-permeable channels, some of which have been localized, is required for Ca(2+)-modulated events in sieve elements. There, Ca(2+)-permeable channels are clustered and create so-called Ca(2+) hotspots, which play a pivotal role in sieve element occlusion. Occlusion mechanisms play a central part in the interaction between plants and phytopathogens (e.g. aphids or phytoplasmas) and in transient re-organization of the vascular symplasm. It is argued that Ca(2+)-triggered systemic signalling occurs in partly overlapping waves. The forefront of EPWs may be accompanied by a burst of free Ca(2+) ions and Ca(2+)-binding proteins in the sieve tube sap, with a far-reaching impact on target cells. Lateral dispersion of EPWs may induce diverse Ca(2+) influx and handling patterns (Ca(2+) signatures) in various cell types lining the sieve tubes. As a result, a variety of cascades may trigger the fabrication of signals such as phytohormones, proteins, or RNA species released into the sap stream after product-related lag times. Moreover, transient reorganization of the vascular symplasm could modify cascades in disjunct vascular cells.


European Journal of Plant Pathology | 2005

Hydrogen peroxide localization and antioxidant status in the recovery of apricot plants from European Stone Fruit Yellows

Rita Musetti; Luigi Sanità di Toppi; Marta Martini; Francesca Ferrini; Alberto Loschi; M. A. Favali; Ruggero Osler

Hydrogen peroxide (H2O2) localization and roles of peroxidases, malondialdehyde and reduced glutathione were compared in leaves of apricot (Prunus armeniaca) plants asymptomatic, European Stone Fruits Yellows (ESFY)-symptomatic and recovered. Nested PCR analysis revealed that ‘Candidatus Phytoplasma prunorum’, is present in asymptomatic, symptomatic and recovered apricot trees, confirming previous observations on this species, in which recovery does not seem to be related to the disappearance of phytoplasma from the plant.H2O2was detected cytochemically by its reaction with cerium chloride, which produces electron-dense deposits of cerium perhydroxides. H2O2was present in the plasmalemma of the phloem cells of recovered apricot plant leaves, but not in the asymptomatic or symptomatic material. Furthermore, by labelling apricot leaf tissues with diaminobenzidine DAB, no differences were found in the localization of peroxidases.Protein content in asymptomatic, symptomatic and recovered leaves was not significantly different from one another. In contrast, guaiacol peroxidase activity had the following trend: symptomatic > recovered > asymptomatic, whereas reduced glutathione content followed the opposite trend: asymptomatic > recovered > symptomatic. Moreover, no differences were observed in malondialdehyde concentrations between asymptomatic, symptomatic and recovered leaves. The overall results suggest that H2O2 and related metabolites and enzymes appear to be involved in lessening both pathogen virulence and disease symptom expression in ESFY-infected apricot plants.


Phytopathology | 2006

Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata

Rita Musetti; A. Vecchione; L. Stringher; Stefano Borselli; L. Zulini; C. Marzani; M. D'Ambrosio; L. Sanità di Toppi; I. Pertot

ABSTRACT One hundred twenty-six endophytic microorganisms isolated from grapevine leaves showing anomalous symptoms of downy mildew were tested on grapevine leaf disks as biocontrol agents against Plasmopara viticola. Among the 126 microorganisms, only five fungal isolates completely inhibited the sporulation of P. viticola; all of them were identified as Alternaria alternata. Ultrastructural analyses were carried out by transmission electron microscopy to observe cellular interactions between P. viticola and A. alternata in the grapevine leaf tissue. Cytological observations indicated that, even without close contact with A. alternata, the P. viticola mycelium showed severe ultrastructural alterations, such as the presence of enlarged vacuoles or vacuoles containing electron-dense precipitates. Haustoria appeared necrotic and irregularly shaped or were enclosed in callose-like substances. Therefore, a toxic action of A. alternata against P. viticola was hypothesized. To examine the production of toxic low-molecular-weight metabolites by A. alternata, we analyzed the fungal liquid culture by thin layer chromatography and proton magnetic resonance spectroscopy. The main low-molecular-weight metabolites produced by the endophyte were three diketopiperazines: cyclo(l-phenylalanine-trans-4-hydroxy-l-proline), cyclo(l-leucine-trans-4-hydroxy-l-proline), and cyclo(l-alanine-trans-4-hydroxy-l-proline). When applied at different concentrations to both grapevine leaf disks and greenhouse plants, a mixture of the three diketopiperazines was very efficacious in limiting P. viticola sporulation.


Phytopathology | 2010

Phloem Cytochemical Modification and Gene Expression Following the Recovery of Apple Plants from Apple Proliferation Disease

Rita Musetti; A. R. Paolacci; M. Ciaffi; Oronzo A. Tanzarella; R. Polizzotto; F. Tubaro; M. Mizzau; P. Ermacora; M. Badiani; Ruggero Osler

Recovery of apple trees from apple proliferation was studied by combining ultrastructural, cytochemical, and gene expression analyses to possibly reveal changes linked to recovery-associated resistance. When compared with either healthy or visibly diseased plants, recovered apple trees showed abnormal callose and phloem-protein accumulation in their leaf phloem. Although cytochemical localization detected Ca(2+) ions in the phloem of all the three plant groups, Ca(2+) concentration was remarkably higher in the phloem cytosol of recovered trees. The expression patterns of five genes encoding callose synthase and of four genes encoding phloem proteins were analyzed by quantitative real-time reverse transcription-polymerase chain reaction. In comparison to both healthy and diseased plants, four of the above nine genes were remarkably up-regulated in recovered trees. As in infected apple trees, phytoplasma disappear from the crown during winter, but persist in the roots, and it is suggested that callose synthesis/deposition and phloem-protein plugging of the sieve tubes would form physical barriers preventing the recolonization of the crown during the following spring. Since callose deposition and phloem-protein aggregation are both Ca(2+)-dependent processes, the present results suggest that an inward flux of Ca(2+) across the phloem plasma membrane could act as a signal for activating defense reactions leading to recovery in phytoplasma-infected apple trees.


Plant Cell and Environment | 2013

Laser microdissection of grapevine leaf phloem infected by stolbur reveals site-specific gene responses associated to sucrose transport and metabolism

Simonetta Santi; Simone Grisan; Alessandro Pierasco; Federica De Marco; Rita Musetti

Bois Noir is an emergent disease of grapevine that has been associated to a phytoplasma belonging to the XII-A stolbur group. In plants, phytoplasmas have been found mainly in phloem sieve elements, from where they spread moving through the pores of plates, accumulating especially in source leaves. To examine the expression of grapevine genes involved in sucrose transport and metabolism, phloem tissue, including sieve element/companion cell complexes and some parenchyma cells, was isolated from healthy and infected leaves by means of laser microdissection pressure catapulting (LMPC). Site-specific expression analysis dramatically increased sensitivity, allowing us to identify specific process components almost completely masked in whole-leaf analysis. Our findings showed decreased phloem loading through inhibition of sucrose transport and increased sucrose cleavage activity, which are metabolic changes strongly suggesting the establishment of a phytoplasma-induced switch from carbohydrate source to sink. The analysis focused at the infection site also showed a differential regulation and specificity of two pathogenesis-related thaumatin-like genes (TL4 and TL5) of the PR-5 family.


Functional Plant Biology | 2004

Responses of Xanthoria parietina thalli to environmentally relevant concentrations of hexavalent chromium

Luigi Sanità di Toppi; Rita Musetti; Rosita Marabottini; Maria Grazia Corradi; Z Vattuone; M. A. Favali; M. Badiani

Thalli of the lichen Xanthoria parietina (L.) Th. Fr. were soaked for either 24 or 48 h in a buffered medium in the presence of environmentally relevant concentrations (4.8 and 9.6 μM) of hexavalent chromium [Cr(VI)]. Treatment effects on the antioxidant status, differential distribution and fate of Cr(VI) among the mycobiont and the photobiont cells, and potential damage to cell ultrastructure in the two bionts, were evaluated. The adopted conditions of low Cr(VI) stress caused: (i) an increase in the level of ascorbic acid and a decrease in that of reduced glutathione, as well as a moderate increase in guaiacol peroxidase activity, only observed after treatment with 9.6 μM Cr(VI); (ii) no changes in malondialdehyde content; (iii) a remarkable Cr accumulation in the mycobiont cytosol and compartmentalisation in the mycobiont vacuoles;(iv) a modest apoplastic Cr immobilisation by the outer part of the cell walls, of both the mycobiont and the photobiont. The response of X.parietina to low concentrations of Cr(VI) appears to be a complex phenomenon, which might reflect maintenance of cellular homeostatic equilibria, rather than specific response pathways.


Nano Letters | 2011

A Revertible, Autonomous, Self-Assembled DNA-Origami Nanoactuator

Monica Marini; Luca Piantanida; Rita Musetti; Alpan Bek; Mingdong Dong; Flemming Besenbacher; Marco Lazzarino; Giuseppe Firrao

A DNA-origami actuator capable of autonomous internal motion in accord to an external chemical signal was designed, built, operated and imaged. The functional DNA nanostructure consists of a disk connected to an external ring in two, diametrically opposite points. A single stranded DNA, named probe, was connected to two edges of the disk perpendicularly to the axis of constrain. In the presence of a hybridizing target molecule, the probe coiled into a double helix that stretched the inner disk forcing the edges to move toward each other. The addition of a third single stranded molecule that displaced the target from the probe restored the initial state of the origami. Operation, dimension and shape were carefully characterized by combining microscopy and fluorescence techniques.


Functional Plant Biology | 2005

Cell wall immobilisation and antioxidant status of Xanthoria parietina thalli exposed to cadmium

Luigi Sanità di Toppi; Rosita Marabottini; Z Vattuone; Rita Musetti; M. A. Favali; Agostino Sorgonà; M. Badiani

Total and cell wall-bound cadmium and the major antioxidants were measured in thalli of the lichen Xanthoria parietina (L.) Th. Fr. exposed to two Cd concentrations, namely 4.5 or 9.0 μm, in liquid medium during exposure periods of either 24 or 48 h. Total Cd in the thalli was within the range of previous field measurements and was proportional to the exposure concentration, but less than proportional with respect to exposure duration. More than half of the total Cd was immobilised by the cell wall. The adopted conditions of Cd stress caused: (i) no changes in dry weight and protein concentration; (ii) an increase in the level of ascorbic acid and a decrease in that of reduced glutathione, as well as an increase in guaiacol peroxidase activity; (iii) no changes or moderate decreases in the activities of superoxide dismutase, catalase, dehydroascorbate-, NADPH-dependent glutathione disulfide-, and monodehydroascorbate reductases and of ascorbate peroxidase; (iv) an increase of the level of thiobarbituric acid-reactive substances, assumed to reflect malondialdehyde formation arising from membrane lipid peroxidation. Thus, X. parietina might withstand realistic levels of Cd stress by: (1) intercepting the heavy metal at cell wall level, (2) the intervention of antioxidant metabolites, and (3) a moderate increase in guaiacol peroxidase activity.


Molecular Plant-microbe Interactions | 2013

Phytoplasma-Triggered Ca 2+ Influx Is Involved in Sieve-Tube Blockage

Rita Musetti; Stefanie V. Buxa; Alberto Loschi; Rachele Polizzotto; Karl-Heinz Kogel; Aart J. E. van Bel

Phytoplasmas are obligate, phloem-restricted phytopathogens that are disseminated by phloem-sap-sucking insects. Phytoplasma infection severely impairs assimilate translocation in host plants and might be responsible for massive changes in phloem physiology. Methods to study phytoplasma- induced changes thus far provoked massive, native occlusion artifacts in sieve tubes. Hence, phytoplasma-phloem relationships were investigated here in intact Vicia faba host plants using a set of vital fluorescent probes and confocal laser-scanning microscopy. We focused on the effects of phytoplasma infection on phloem mass-flow performance and evaluated whether phytoplasmas induce sieve-plate occlusion. Apparently, phytoplasma infection brings about Ca(2+) influx into sieve tubes, leading to sieve-plate occlusion by callose deposition or protein plugging. In addition, Ca(2+) influx may confer cell wall thickening of conducting elements. In conclusion, phytoplasma effectors may cause gating of sieve-element Ca(2+) channels leading to sieve-tube occlusion with presumptive dramatic effects on phytoplasma spread and photoassimilate distribution.

Collaboration


Dive into the Rita Musetti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge