Ruggero Osler
University of Udine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ruggero Osler.
European Journal of Plant Pathology | 2005
Rita Musetti; Luigi Sanità di Toppi; Marta Martini; Francesca Ferrini; Alberto Loschi; M. A. Favali; Ruggero Osler
Hydrogen peroxide (H2O2) localization and roles of peroxidases, malondialdehyde and reduced glutathione were compared in leaves of apricot (Prunus armeniaca) plants asymptomatic, European Stone Fruits Yellows (ESFY)-symptomatic and recovered. Nested PCR analysis revealed that ‘Candidatus Phytoplasma prunorum’, is present in asymptomatic, symptomatic and recovered apricot trees, confirming previous observations on this species, in which recovery does not seem to be related to the disappearance of phytoplasma from the plant.H2O2was detected cytochemically by its reaction with cerium chloride, which produces electron-dense deposits of cerium perhydroxides. H2O2was present in the plasmalemma of the phloem cells of recovered apricot plant leaves, but not in the asymptomatic or symptomatic material. Furthermore, by labelling apricot leaf tissues with diaminobenzidine DAB, no differences were found in the localization of peroxidases.Protein content in asymptomatic, symptomatic and recovered leaves was not significantly different from one another. In contrast, guaiacol peroxidase activity had the following trend: symptomatic > recovered > asymptomatic, whereas reduced glutathione content followed the opposite trend: asymptomatic > recovered > symptomatic. Moreover, no differences were observed in malondialdehyde concentrations between asymptomatic, symptomatic and recovered leaves. The overall results suggest that H2O2 and related metabolites and enzymes appear to be involved in lessening both pathogen virulence and disease symptom expression in ESFY-infected apricot plants.
Phytopathology | 2010
Rita Musetti; A. R. Paolacci; M. Ciaffi; Oronzo A. Tanzarella; R. Polizzotto; F. Tubaro; M. Mizzau; P. Ermacora; M. Badiani; Ruggero Osler
Recovery of apple trees from apple proliferation was studied by combining ultrastructural, cytochemical, and gene expression analyses to possibly reveal changes linked to recovery-associated resistance. When compared with either healthy or visibly diseased plants, recovered apple trees showed abnormal callose and phloem-protein accumulation in their leaf phloem. Although cytochemical localization detected Ca(2+) ions in the phloem of all the three plant groups, Ca(2+) concentration was remarkably higher in the phloem cytosol of recovered trees. The expression patterns of five genes encoding callose synthase and of four genes encoding phloem proteins were analyzed by quantitative real-time reverse transcription-polymerase chain reaction. In comparison to both healthy and diseased plants, four of the above nine genes were remarkably up-regulated in recovered trees. As in infected apple trees, phytoplasma disappear from the crown during winter, but persist in the roots, and it is suggested that callose synthesis/deposition and phloem-protein plugging of the sieve tubes would form physical barriers preventing the recolonization of the crown during the following spring. Since callose deposition and phloem-protein aggregation are both Ca(2+)-dependent processes, the present results suggest that an inward flux of Ca(2+) across the phloem plasma membrane could act as a signal for activating defense reactions leading to recovery in phytoplasma-infected apple trees.
European Journal of Plant Pathology | 2002
Nazia Loi; Paolo Ermacora; L. Carraro; Ruggero Osler; Tseh An Chen
Two monoclonal antibodies were obtained against the apple proliferation phytoplasma that provide easy, rapid, specific and sensitive serological detection. They reacted specifically by using ELISA and immunofluorescence techniques with apple proliferation-infected periwinkles and apple trees from different regions in northern Italy and Slovenia, but not with several other phytoplasma isolates. We did not observe any monoclonal antibody reaction even using phytoplasmas belonging to the same phylogenetic group such as European stone fruit yellows and pear decline. Two serological techniques, immunofluorescence and ELISA, were compared with DAPI staining and PCR. From July until leaf fall ELISA was as sensitive as PCR but was more rapid and convenient than PCR; immunofluorescence was useful for specific detection of apple proliferation phytoplasma on roots throughout the year. Serological techniques could be conveniently applied in the roots, stems and leaves of apple trees depending on specific phenological stages of the plants.
European Journal of Plant Pathology | 1998
L. Carraro; Nazia Loi; Paolo Ermacora; Ruggero Osler
A 13 year comparative study was carried out on the behaviour of four European and two Japanese plum varieties grown in adjacent rows in an area of northern Italy where plum leptonecrosis is epidemic. Within seven years, 100% of the Japanese plum trees became symptomatically infected. Nine years after planting, five trees of each of the European cvs, which were asymptomatic, were top-grafted with healthy buds of the cv Ozark Premier, which is an indicator for plum leptonecrosis. Based on the results of PCR analysis, DAPI staining and on the reaction of the top-grafted Ozark Premier indicators, 50% of the European plum trees, despite their healthy appearance, were shown to be infected with plum leptonecrosis. The detectable presence and graft transmissibility of the plum leptonecrosis phytoplasma in the asymptomatic European plum trees means that the European plum trees are not resistant to the infection but that they are tolerant. The active presence of a still unknown vector/s in the investigated area is stressed as well as the important role of Prunus domestica L. played in the conservation and spread of plum leptonecrosis.
Journal of Applied Microbiology | 2011
Rita Musetti; Simone Grisan; Rachele Polizzotto; Marta Martini; C. Paduano; Ruggero Osler
Aims: We investigated the ultrastructural and molecular interactions between ‘Candidatus Phytoplasma mali’ and the apple endophyte Epicoccum nigrum in the experimental host Catharanthus roseus to determine whether inoculation of endophyte could trigger defence reactions in the host.
European Journal of Plant Pathology | 2013
Rita Musetti; Khaled Farhan; Federica De Marco; Rachele Polizzotto; Annarita Paolacci; M. Ciaffi; Paolo Ermacora; Simone Grisan; Simonetta Santi; Ruggero Osler
To improve knowledge about plant/phytoplasma interactions and, in particular, about the ‘recovery’ phenomenon in previously-infected plants, we investigated and compared expression levels of several defence-related genes (four pathogenesis-related proteins and three jasmonate-pathway marker enzymes) in apple plants showing different states of health: vigorous (healthy), phytoplasma-infected, and recovered. Real Time-PCR analyses demonstrated that genes are differentially expressed in apple leaf tissue according to the plants’ state of health. Malus domestica Pathogenesis-Related protein (MdPR) 1, MdPR 2 and MdPR 5 were significantly induced in leaves of diseased and symptomatic plants compared to leaves of those plants that were healthy or recovered. On the other hand, levels of all the jasmonate (JA)-pathway marker genes that we selected for this study, were up-regulated in the leaves of recovered plants compared to the diseased ones. In conclusion, our study demonstrated that two different sets of defence genes are involved in the interactions between apple plants and ‘Candidatus Phytoplasma mali’ (‘Ca. P. mali’) and that these genes are differentially expressed during phytoplasma infection or recovery.
Phytoparasitica | 2005
Gülşen Sertkaya; Marta Martini; Paolo Ermacora; Rita Musetti; Ruggero Osler
During the late summer-early autumn of 2002, surveys were carried out in Turkey to determine the presence of phytoplasma diseases in fruit trees. Phytoplasmas were detected and characterized by PCR-RFLP analysis and TEM technique in stone fruit and pear trees in the eastern Mediterranean region of the country. Six out of 24 samples, including almond, apricot, peach, pear and plum, gave positive results in PCR assays. RFLP analysis usingSspI andBsaAI enzymes of PCR products obtained with primer pair f01/r01 enabled identification of the phytoplasmas involved in the diseases. Stone fruit trees, including a local apricot variety (‘Sakıt’) and a pear sample, were found to be infected with European stone fruit yellows (ESFY, 16SrX-B) and pear decline (PD, 16SrX-C) phytoplasmas, respectively. This is the first report in Turkey of PD phytoplasma infecting pear and of ESFY phytoplasma infecting almond, apricot, myrobalan plum and peach; ESFY phytoplasma infecting Japanese plum was previously reported.
Phytoparasitica | 2016
Ruggero Osler; Stefano Borselli; Paolo Ermacora; Francesca Ferrini; Alberto Loschi; Marta Martini; Serena Moruzzi; Rita Musetti; Michele Giannini; Simone Serra; Nazia Loi
European Stone Fruit Yellows (ESFY) is an emerging disease caused by ‘Candidatus Phytoplasma prunorum’ (‘Ca. P. prunorum’) affecting stone fruits, as apricots. Resistant apricot cultivars are unknown, but it has been demonstrated that individual plants can recover from the disease, behaving as completely tolerant to ESFY. The status of tolerance is transmissible by grafting to successive apricot individuals, but it is not clear whether recovery corresponds to a transmissible tolerance that depends on a plant–mediated reaction or if it is due to a cross-protection promoted by a transmissible protective agent i.e. hypovirulent strain/s of ‘Ca. P. prunorum’. Results achieved after prolonged field experiments support the first hypothesis. Two groups of apricot plants derived from a common recovered mother (one ‘Ca. P. prunorum’-free after heat-treatment and the second not heat-treated, i.e. harbouring potential protective strain/s of the phytoplasma), behaved similarly: no plants from either of the two groups developed stable ESFY symptoms after natural infections. Corresponding groups of plants, derived from symptomatic mothers, developed a high percentage of diseased plants after natural infection. No potential protective ‘Ca. P. prunorum’ hypovirulent strains were detected in the asymptomatic apricot plants. The summarized evidence supports a host-defence induction, likely of epigenetic feature. The present long-term study in apricot represents an uncommon empiric proof supporting the theory of inducible resistance to pathogens in plants.
Archive | 2019
Paolo Ermacora; Ruggero Osler
Phytoplasmas are associated with diseases in several hundreds of cultivated herbaceous and woody plants. Their impact in agriculture and the periodical outbreak of worrying epidemics make very important, besides precise laboratory-based diagnosis, the direct in-field recognition of phytoplasma disease symptoms. Even if some symptoms are typical of this kind of pathogens, in-field diagnosis requires the knowledge of the host plant, strong field experience, and awareness of the symptom variability of the various organs of the plant during different seasons and under various environmental conditions. It is therefore very important to be familiar with factors like environmental conditions, agronomical features, and disease progression that influence symptom expression. Therefore, a satisfactory diagnosis should be based on repeated and complete observations scored over the entire plant and across different times of the year. A more suitable diagnosis is possible if the observer is able to recognize and distinguish the symptoms of other biotic or abiotic diseases. A general rule is to observe three different symptoms, at least, and to seek input from the grower about the initial development, frequency, diffusion, and particular characteristics of the disease.After a short introduction the following symptoms are presented: the most common and representative symptoms caused by phytoplasmas; the most common symptoms of phytoplasma diseases occurring in particular plant organs, with some references to specific diseases; phytoplasma symptoms on the model plant periwinkle (Vinca rosea or Catharanthus roseus); the main factors influencing phytoplasma symptoms expression; and several practical procedures that should be followed for suitable diagnosis. A series of original photos have been included to illustrate typical symptoms.
Journal of Plant Pathology | 1998
L. Carraro; Ruggero Osler; Nazia Loi; Paolo Ermacora; E. Refatti