Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Rosenthal is active.

Publication


Featured researches published by Rita Rosenthal.


Journal of Cell Science | 2010

Claudin-2, a component of the tight junction, forms a paracellular water channel

Rita Rosenthal; Susanne Milatz; Susanne M. Krug; Beibei Oelrich; Jörg-Dieter Schulzke; Salah Amasheh; Dorothee Günzel; Michael Fromm

Whether or not significant amounts of water pass the tight junction (TJ) of leaky epithelia is still unresolved, because it is difficult to separate transcellular water flux from TJ-controlled paracellular water flux. Using an approach without differentiating technically between the transcellular and paracellular route, we measured transepithelial water flux with and without selective molecular perturbation of the TJ to unequivocally attribute changes to the paracellular pathway. To this end, MDCK C7 cells were stably transfected with either claudin-2 or claudin-10b, two paracellular cation-channel-forming TJ proteins that are not endogenously expressed in this cell line. Claudin-2 is typical of leaky, water-transporting epithelia, such as the kidney proximal tubule, whereas claudin-10b is present in numerous epithelia, including water-impermeable segments of the loop of Henle. Neither transfection altered the expression of endogenous claudins or aquaporins. Water flux was induced by an osmotic gradient, a Na+ gradient or both. Under all conditions, water flux in claudin-2-transfected cells was elevated compared with vector controls, indicating claudin-2-mediated paracellular water permeability. Na+-driven water transport in the absence of an osmotic gradient indicates a single-file mechanism. By contrast, claudin-10b transfection did not alter water flux. We conclude that claudin-2, but not claudin-10b, forms a paracellular water channel and thus mediates paracellular water transport in leaky epithelia.


The FASEB Journal | 2005

Expression of bestrophin-1, the product of the VMD2 gene, modulates voltage-dependent Ca2+ channels in retinal pigment epithelial cells

Rita Rosenthal; Benjamin Bakall; Tyson R. Kinnick; Neal S. Peachey; Sönke Wimmers; Claes Wadelius; Alan D. Marmorstein; O. Strauss

Mutations in the VMD2 gene cause Bests disease, an inherited form of macular degeneration. The reduction in the light‐peak amplitude in the patients electro‐oculogram suggests that bestrophin‐1 influences the membrane conductance of the retinal pigment epithelium (RPE). Systemic application of the L‐type Ca2+ channel blocker nimodipine reduced the light‐peak amplitude in the rat electroretinogram but not a‐ and b‐waves. Expression of bestrophin‐1 in a RPE cell line (RPE‐J) led to changes in L‐type channel properties. Wild‐type bestrophin‐1 induced an acceleration of activation kinetics of Ba2+ currents through L‐type Ca2+ channels and a shift of the voltage‐dependent activation to more negative values, closer to the resting potential of RPE cells. Expression of bestrophin‐1 with Best disease‐causing mutations led to comparable shifts in voltage‐dependent activation but different effects on activation and inactivation kinetics. Bestrophin W93C exhibited slowed activation and inactivation, and bestrophin R218C accelerated the activation and inactivation. Thus, transfection of RPE cells with bestrophin‐1 distinctively changed L‐type Ca2+ channel kinetics and voltage‐dependence. On the basis of these data, we propose that presence of bestrophin‐1 influences kinetics and voltage‐dependence of voltage‐dependent Ca2+ channels and that these effects might open new ways to understand the mechanisms leading to retinal degeneration in Bests disease.


Journal of Cell Science | 2009

Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function

Dorothee Günzel; Marchel Stuiver; P. Jaya Kausalya; Lea Haisch; Susanne M. Krug; Rita Rosenthal; Iwan C. Meij; Walter Hunziker; Michael Fromm; Dominik Müller

The tight junction protein claudin-10 is known to exist in two isoforms, resulting from two alternative exons, 1a and 1b (Cldn10a, Cldn10b). Here, we identified and characterized another four claudin-10 splice variants in mouse and human. One (Cldn10a_v1) results from an alternative splice donor site, causing a deletion of the last 57 nucleotides of exon 1a. For each of these three variants one further splice variant was identified (Cldn10a_v2, Cldn10a_v3, Cldn10b_v1), lacking exon 4. When transfected into MDCK cells, Cldn10a, Cldn10a_v1 and Cldn10b were inserted into the tight junction, whereas isoforms of splice variants lacking exon 4 were retained in the endoplasmic reticulum. Cldn10a transfection into MDCK cells confirmed the previously described increase in paracellular anion permeability. Cldn10a_v1 transfection had no direct effect, but modulated Cldn10a-induced organic anion permeability. At variance with previous reports in MDCK-II cells, transfection of high-resistance MDCK-C7 cells with Cldn10b dramatically decreased transepithelial resistance, increased cation permeability, and changed monovalent cation selectivity from Eisenman sequence IV to X, indicating the presence of a high field-strength binding site that almost completely removes the hydration shell of the permeating cations. The extent of all these effects strongly depended on the endogenous claudins of the transfected cells.


Journal of Investigative Dermatology | 2013

Contribution of Tight Junction Proteins to Ion, Macromolecule, and Water Barrier in Keratinocytes

Nina Kirschner; Rita Rosenthal; Mikio Furuse; Ingrid Moll; Michael Fromm; Johanna M. Brandner

Tight junctions (TJs) form a selective barrier for ions, water, and macromolecules in simple epithelia. In keratinocytes and epidermis, TJs were shown to be involved in individual barrier functions. The absence of the TJ protein claudin-1 (Cldn1) in mice results in a skin-barrier defect characterized by lethal water loss. However, detailed molecular analyses of the various TJ barriers in keratinocytes and the contribution of distinct TJ proteins are missing. Herein, we discriminate TJ-dependent paracellular resistance from transcellular resistance in cultured keratinocytes using the two-path impedance spectroscopy. We demonstrate that keratinocyte TJs form a barrier for Na(+), Cl(-), and Ca(2+), and contribute to barrier function for water and larger molecules of different size. In addition, knockdown of Cldn1, Cldn4, occludin, and zonula occludens-1 increased paracellular permeabilities for ions and larger molecules, demonstrating that all of these TJ proteins contribute to barrier formation. Remarkably, Cldn1 and Cldn4 are not critical for TJ barrier function for water in submerged keratinocyte cultures. However, Cldn1 influences stratum corneum (SC) proteins important for SC water barrier function, and is crucial for TJ barrier formation for allergen-sized macromolecules.


Cellular and Molecular Life Sciences | 2012

Claudin-17 forms tight junction channels with distinct anion selectivity

Susanne M. Krug; Dorothee Günzel; Marcel P. Conrad; Rita Rosenthal; Anja Fromm; Salah Amasheh; Jörg D. Schulzke; Michael Fromm

Barrier properties of tight junctions are determined by the claudin protein family. Many claudins seal this barrier, but others form paracellular channels. Among these, no claudins with general and clear-cut anion selectivity have yet been described, while for claudin-10a and claudin-4, only circumstantial or small anion selectivities have been shown. A claudin with unknown function and tissue distribution is claudin-17. We characterized claudin-17 by overexpression and knock-down in two renal cell lines. Overexpression in MDCK C7 cell layers caused a threefold increase in paracellular anion permeability and switched these cells from cation- to anion-selective. Knockdown in LLC-PK1 cells indorsed the finding of claudin-17-based anion channels. Mutagenesis revealed that claudin-17 anion selectivity critically depends on a positive charge at position 65. Claudin-17 expression was found in two organs: marginal in brain but abundant in kidney, where expression was intense in proximal tubules and gradually decreased towards distal segments. As claudin-17 is predominantly expressed in proximal nephrons, which exhibit substantial, though molecularly not defined, paracellular chloride reabsorption, we suggest that claudin-17 has a unique physiological function in this process. In conclusion, claudin-17 forms channels within tight junctions with distinct anion preference.


Tissue barriers | 2015

Claudin-2 as a mediator of leaky gut barrier during intestinal inflammation

Julia Luettig; Rita Rosenthal; Christian Barmeyer; Jd Schulzke

The epithelial tight junction determines the paracellular water and ion movement in the intestine and also prevents uptake of larger molecules, including antigens, in an uncontrolled manner. Claudin-2, one of the 27 mammalian claudins regulating that barrier function, forms a paracellular channel for small cations and water. It is typically expressed in leaky epithelia like proximal nephron and small intestine and provides a major pathway for the paracellular transport of sodium, potassium, and fluid. In intestinal inflammation (Crohns disease, ulcerative colitis), immune-mediated diseases (celiac disease), and infections (HIV enteropathy), claudin-2 is upregulated in small and large intestine and contributes to diarrhea via a leak flux mechanism. In parallel to that upregulation, other epithelial and tight junctional features are altered and the luminal uptake of antigenic macromolecules is enhanced, for which claudin-2 may be partially responsible through induction of tight junction strand discontinuities.


Advances in Experimental Medicine and Biology | 2002

Ca2+-Channels in the RPE

Rita Rosenthal; Olaf Strauß

The retinal pigment epithelium closely interacts with photoreceptors and helps to maintain the activity of photoreceptors. Investigations using patch-clamp techniques on cultured or freshly isolated retinal pigment epithelial cells from various species demonstrated the expression of voltage-dependent Ca2+ channels with characteristics of L-type channels. Since retinal pigment epithelial cells rarely display changes of the membrane potential which lead to the activation of these Ca2+ channels, their function seemed to be unclear. Recent findings shed light onto the possible role of these Ca2+ channels. First of all, the subtype of these ion channels could be identified as neuroendocrine subtype of L-type channels. Recent studies demonstrated that the neuroendocrine subtype of L-type channels is regulated by serine/ threonine kinases and protein tyrosine kinases. These phosphorylation-dependent regulatory mechanisms lead to Ca2+ fluxes into the cell which are independent of changes in the membrane potential and induced by a shift in the voltage-dependence ofthese ion channels. The regulation modality implied that L-type Ca2+ channels play an important role in signal transduction pathways which are important for a communication between retinal pigment epithelium and photoreceptors. L-type Ca2+ channels in the retinal pigment epithelium seem to be involved in the regulation of secretion of various factors, in growth factor-dependent intracellular signalling and in the regulation of the phagocytosis of photoreceptor outer membranes. Thus, voltage-dependent Ca2+ channels in the retinal pigment epithelium are of importance for the function of photoreceptors.


PLOS ONE | 2013

Occludin Is Involved in Adhesion, Apoptosis, Differentiation and Ca2+-Homeostasis of Human Keratinocytes: Implications for Tumorigenesis

Susanne Rachow; Michaela Zorn-Kruppa; Ulrich Ohnemus; Nina Kirschner; Sabine Vidal-y-Sy; Peter von den Driesch; Christian Börnchen; Jürgen Eberle; Michael Mildner; Eik Vettorazzi; Rita Rosenthal; Ingrid Moll; Johanna M. Brandner

Tight junction (TJ) proteins are involved in a number of cellular functions, including paracellular barrier formation, cell polarization, differentiation, and proliferation. Altered expression of TJ proteins was reported in various epithelial tumors. Here, we used tissue samples of human cutaneous squamous cell carcinoma (SCC), its precursor tumors, as well as sun-exposed and non-sun-exposed skin as a model system to investigate TJ protein alteration at various stages of tumorigenesis. We identified that a broader localization of zonula occludens protein (ZO)-1 and claudin-4 (Cldn-4) as well as downregulation of Cldn-1 in deeper epidermal layers is a frequent event in all the tumor entities as well as in sun-exposed skin, suggesting that these changes result from chronic UV irradiation. In contrast, SCC could be distinguished from the precursor tumors and sun-exposed skin by a frequent complete loss of occludin (Ocln). To elucidate the impact of down-regulation of Ocln, we performed Ocln siRNA experiments in human keratinocytes and uncovered that Ocln downregulation results in decreased epithelial cell-cell adhesion and reduced susceptibility to apoptosis induction by UVB or TNF-related apoptosis-inducing ligand (TRAIL), cellular characteristics for tumorigenesis. Furthermore, an influence on epidermal differentiation was observed, while there was no change of E-cadherin and vimentin, markers for epithelial-mesenchymal transition. Ocln knock-down altered Ca2+-homeostasis which may contribute to alterations of cell-cell adhesion and differentiation. As downregulation of Ocln is also seen in SCC derived from other tissues, as well as in other carcinomas, we suggest this as a common principle in tumor pathogenesis, which may be used as a target for therapeutic intervention.


British Journal of Pharmacology | 2011

Endothelin antagonism as an active principle for glaucoma therapy

Rita Rosenthal; Michael Fromm

Endothelin, the most potent vasoactive peptide known to date, has been suggested to play a potential role in the pathogenesis of open‐angle glaucoma. Open‐angle glaucoma is the most common optic nerve head neuropathy and is associated with a loss of retinal ganglion cells and visual field damage. Although an increased intraocular pressure is a major risk factor for glaucomatous optic neuropathy, other factors such as a reduced ocular blood flow play an important role for appearance of the disease. Thus, treatment of glaucoma is focused on lowering of intraocular pressure and preventing the occurrence or progression of glaucomatous optic neuropathy. Endothelin participates in the regulation of intraocular pressure by an effect on trabecular outflow, the main route for aqueous humour outflow from the eye. Trabecular outflow is modulated by trabecular meshwork contractility which is affected by endothelin. In addition to the effects of endothelin in the anterior part of the eye, the vasoconstrictor causes a decrease in ocular blood flow followed by pathological changes in the retina and the optic nerve head which is assumed to contribute to the degeneration of retinal ganglion cells. In sum, inhibition of endothelin signalling leads to lowering of intraocular pressure and exerts neuroprotective effects. Thus, endothelin antagonism in the eye represents a promising approach for pharmacological treatment of glaucoma.


The Journal of Infectious Diseases | 2011

Aerolysin From Aeromonas hydrophila Perturbs Tight Junction Integrity and Cell Lesion Repair in Intestinal Epithelial HT-29/B6 Cells

Roland Bücker; Susanne M. Krug; Rita Rosenthal; Dorothee Günzel; Anja Fromm; Martin Zeitz; Trinad Chakraborty; Michael Fromm; Hans-Jörg Epple; Jörg-Dieter Schulzke

BACKGROUND Aeromonads cause a variety of infections, including gastroenteritis, sepsis, and wound necrosis. Pathogenesis of Aeromonas hydrophila and its hemolysin has been characterized, but the mechanism of the epithelial barrier dysfunction is currently poorly understood. METHODS Human colon epithelial monolayers HT-29/B6 were apically inoculated with clinical isolates of A. hydrophila or with the secreted pore-forming toxin aerolysin. Epithelial resistance and permeability for several markers were determined in Ussing chambers, using 2-path impedance spectroscopy. The subcellular distribution of tight junction (TJ) and cytoskeleton proteins was analyzed by Western blotting and confocal laser-scanning microscopy. RESULTS A. hydrophila infection induces chloride secretion with a small decrease in transcellular resistance. However, the major effect of A. hydrophila, mediated by its toxin aerolysin, was a sustained reduction of paracellular resistance by retracting sealing TJ proteins from the TJ strands. Aerolysin-treated monolayers showed increased paracellular permeability to FITC-dextran-4000 (0.104 ± 0.014 vs 0.047 ± 0.001 10(-6) cm/s in control; P < .05). Moreover, restitution of epithelial lesions was impaired. The effects were myosin light chain kinase (MLCK) dependent and mediated by intracellular Ca(2+) signaling. CONCLUSIONS During Aeromonas infection, pore formation by aerolysin impairs epithelial integrity by promoting TJ protein redistribution and consequently affecting wound closure. Thus, Aeromonas-induced diarrhea is mediated by 2 mechanisms, transcellular secretion and paracellular leak flux.

Collaboration


Dive into the Rita Rosenthal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Salah Amasheh

Free University of Berlin

View shared research outputs
Researchain Logo
Decentralizing Knowledge