Susanne M. Krug
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Susanne M. Krug.
Journal of Cell Science | 2010
Rita Rosenthal; Susanne Milatz; Susanne M. Krug; Beibei Oelrich; Jörg-Dieter Schulzke; Salah Amasheh; Dorothee Günzel; Michael Fromm
Whether or not significant amounts of water pass the tight junction (TJ) of leaky epithelia is still unresolved, because it is difficult to separate transcellular water flux from TJ-controlled paracellular water flux. Using an approach without differentiating technically between the transcellular and paracellular route, we measured transepithelial water flux with and without selective molecular perturbation of the TJ to unequivocally attribute changes to the paracellular pathway. To this end, MDCK C7 cells were stably transfected with either claudin-2 or claudin-10b, two paracellular cation-channel-forming TJ proteins that are not endogenously expressed in this cell line. Claudin-2 is typical of leaky, water-transporting epithelia, such as the kidney proximal tubule, whereas claudin-10b is present in numerous epithelia, including water-impermeable segments of the loop of Henle. Neither transfection altered the expression of endogenous claudins or aquaporins. Water flux was induced by an osmotic gradient, a Na+ gradient or both. Under all conditions, water flux in claudin-2-transfected cells was elevated compared with vector controls, indicating claudin-2-mediated paracellular water permeability. Na+-driven water transport in the absence of an osmotic gradient indicates a single-file mechanism. By contrast, claudin-10b transfection did not alter water flux. We conclude that claudin-2, but not claudin-10b, forms a paracellular water channel and thus mediates paracellular water transport in leaky epithelia.
The FASEB Journal | 2012
Susanne M. Krug; Gabi Kastenmüller; Ferdinand Stückler; Manuela J. Rist; Thomas Skurk; Manuela Sailer; Johannes Raffler; Werner Römisch-Margl; Jerzy Adamski; Cornelia Prehn; Thomas Frank; Karl-Heinz Engel; Thomas Hofmann; Burkhard Luy; Ralf Zimmermann; Franco Moritz; Philippe Schmitt-Kopplin; Jan Krumsiek; Werner Kremer; Fritz Huber; Uwe Oeh; Fabian J. Theis; Wilfried Szymczak; Hans Hauner; Karsten Suhre; Hannelore Daniel
Metabolic challenge protocols, such as the oral glucose tolerance test, can uncover early alterations in metabolism preceding chronic diseases. Nevertheless, most metabolomics data accessible today reflect the fasting state. To analyze the dynamics of the human metabolome in response to environmental stimuli, we submitted 15 young healthy male volunteers to a highly controlled 4 d challenge protocol, including 36 h fasting, oral glucose and lipid tests, liquid test meals, physical exercise, and cold stress. Blood, urine, exhaled air, and breath condensate samples were analyzed on up to 56 time points by MS‐and NMR‐based methods, yielding 275 metabolic traits with a focus on lipids and amino acids. Here, we show that physiological challenges increased interindividual variation even in phenotypically similar volunteers, revealing metabotypes not observable in baseline metabolite profiles; volunteer‐specific metabolite concentrations were consistently reflected in various biofluids; and readouts from a systematic model of β‐oxidation (e.g., acetylcarnitine/palmitylcarnitine ratio) showed significant and stronger associations with physiological parameters (e.g., fat mass) than absolute metabolite concentrations, indicating that systematic models may aid in understanding individual challenge responses. Due to the multitude of analytical methods, challenges and sample types, our freely available metabolomics data set provides a unique reference for future metabolomics studies and for verification of systems biology models.—Krug, S., Kastenmüller, G., Stückler, F., Rist, M. J., Skurk, T., Sailer, M., Raffler, J., Römisch‐Margl, W., Adamski, J., Prehn, C., Frank, T., Engel, K‐H., Hofmann, T., Luy, B., Zimmermann, R., Moritz, F., Schmitt‐Kopplin, P., Krumsiek, J., Kremer, W., Huber, F., Oeh, U., Theis, F. J., Szymczak, W., Hauner, H., Suhre, K., Daniel, H. The dynamic range of the human metabolome revealed by challenges. FASEB J. 26, 2607‐2619 (2012). www.fasebj.org
Molecular Biology of the Cell | 2009
Susanne M. Krug; Salah Amasheh; Jan F. Richter; Susanne Milatz; Dorothee Günzel; Julie K. Westphal; Otmar Huber; Jörg D. Schulzke; Michael Fromm
Tricellulin is a tight junction protein localized in tricellular tight junctions (tTJs), the meeting points of three cells, but also in bicellular tight junctions (bTJs). To investigate its specific barrier functions in bTJs and tTJs, TRIC-a was expressed in low-level tricellulin-expressing cells, and MDCK II, either in all TJs or only in tTJs. When expressed in all TJs, tricellulin increased paracellular electrical resistance and decreased permeability to ions and larger solutes, which are associated with enhanced ultrastructural integrity of bTJs toward enhanced strand linearity. In tTJs in contrast, ultrastructure was unchanged and tricellulin minimized permeability to macromolecules but not to ions. This paradox is explained by properties of the tTJ central tube which is wide enough for passage of macromolecules, but too rare to contribute significantly to ion permeability. In conclusion, at low tricellulin expression the tTJ central tube forms a pathway for macromolecules. At higher expression, tricellulin forms a barrier in tTJs effective only for macromolecules and in bTJs for solutes of all sizes.
Journal of Cell Science | 2010
Maren Amasheh; Anja Fromm; Susanne M. Krug; Salah Amasheh; Susanne Andres; Martin Zeitz; Michael Fromm; Jörg-Dieter Schulzke
TNFα-mediated tight junction defects contribute to diarrhea in inflammatory bowel diseases (IBDs). In our study, the signaling pathways of the TNFα effect on barrier- or pore-forming claudins were analyzed in HT-29/B6 human colon monolayers. Berberine, a herbal therapeutic agent that has been recently established as a therapy for diabetes and hypercholesterinemia, was able to completely antagonize the TNFα-mediated barrier defects in the cell model and in rat colon. Ussing chamber experiments and two-path impedance spectroscopy revealed a decrease of paracellular resistance after TNFα to 11±4%, whereas transcellular resistance was unchanged. The permeability of the paracellular marker fluorescein was increased fourfold. Berberine alone had no effect while it fully prevented the TNFα-induced barrier defects. This effect on resistance was confirmed in rat colon. TNFα removed claudin-1 from the tight junction and increased claudin-2 expression. Berberine prevented TNFα-induced claudin-1 disassembly and upregulation of claudin-2. The effects of berberine were mimicked by genistein plus BAY11-7082, indicating that they are mediated via tyrosine kinase, pAkt and NFκB pathways. In conclusion, the anti-diarrheal effect of berberine is explained by a novel mechanism, suggesting a therapeutic approach against barrier breakdown in intestinal inflammation.
Journal of Cell Science | 2009
Dorothee Günzel; Marchel Stuiver; P. Jaya Kausalya; Lea Haisch; Susanne M. Krug; Rita Rosenthal; Iwan C. Meij; Walter Hunziker; Michael Fromm; Dominik Müller
The tight junction protein claudin-10 is known to exist in two isoforms, resulting from two alternative exons, 1a and 1b (Cldn10a, Cldn10b). Here, we identified and characterized another four claudin-10 splice variants in mouse and human. One (Cldn10a_v1) results from an alternative splice donor site, causing a deletion of the last 57 nucleotides of exon 1a. For each of these three variants one further splice variant was identified (Cldn10a_v2, Cldn10a_v3, Cldn10b_v1), lacking exon 4. When transfected into MDCK cells, Cldn10a, Cldn10a_v1 and Cldn10b were inserted into the tight junction, whereas isoforms of splice variants lacking exon 4 were retained in the endoplasmic reticulum. Cldn10a transfection into MDCK cells confirmed the previously described increase in paracellular anion permeability. Cldn10a_v1 transfection had no direct effect, but modulated Cldn10a-induced organic anion permeability. At variance with previous reports in MDCK-II cells, transfection of high-resistance MDCK-C7 cells with Cldn10b dramatically decreased transepithelial resistance, increased cation permeability, and changed monovalent cation selectivity from Eisenman sequence IV to X, indicating the presence of a high field-strength binding site that almost completely removes the hydration shell of the permeating cations. The extent of all these effects strongly depended on the endogenous claudins of the transfected cells.
Seminars in Cell & Developmental Biology | 2014
Susanne M. Krug; Jörg D. Schulzke; Michael Fromm
The tight junction forms a barrier against unlimited paracellular passage but some of the tight junction proteins just do the opposite, they form extracellular channels zigzagging between lateral membranes of neighboring cells. All of these channel-forming proteins and even some of the barrier formers exhibit selectivity, which means that they prefer certain substances over others. All channel formers exhibit at least one of the three types of selectivity: for cations (claudin-2, -10b, -15), for anions (claudin-10a, -17) or for water (claudin-2). Also some, but not all, barrier-forming claudins are charge-selective (claudin-4, -8, -14). Moreover, occludin and tricellulin turned out to be relevant for barrier formation against macromolecule passage. Tight junction proteins are dysregulated or can be genetically defective in numerous diseases, which may lead to three effects: (i) impaired paracellular transport e.g. causing magnesium loss in the kidney, (ii) increased paracellular transport of solutes and water e.g. causing leak-flux diarrhea in the intestine, and (iii) increased permeability to large molecules e.g. unwanted intestinal pathogen uptake fueling inflammatory processes. This review gives an overview on the properties of tight junction proteins featuring selective permeability, and in this context explains how these proteins induce or aggravate diseases.
Biochemical and Biophysical Research Communications | 2009
Salah Amasheh; Susanne Milatz; Susanne M. Krug; Maike Bergs; Maren Amasheh; Jörg-Dieter Schulzke; Michael Fromm
In distal colon, the limiting factor for Na(+) absorption is represented by the epithelial sodium channel (ENaC). During absorption, high transepithelial Na(+) gradients are observed. In human colon and in HT-29/B6-GR cells, we investigated whether Na(+) back-leakage is prevented by paracellular sealing. Tissues and cells were incubated with corticosteroids. Barrier properties were analyzed in electrophysiological experiments. Subsequently, analysis of ENaC and tight junction protein expression, localization, and regulation was performed. In colon, nanomolar aldosterone induced sodium absorption via ENaC. Concomitantly, paracellular (22)Na(+) permeability was reduced by half and claudin-8 within the tight junction complex was nearly doubled. Real-time PCR validated an increase of claudin-8 transcripts. Two-path impedance spectroscopy following ENaC induction in HT-29/B6-GR revealed a specific increase of paracellular resistance. These results represent an important physiological implication: Na(+) absorption is paralleled by claudin-8-mediated sealing of the paracellular barrier to prevent Na(+) back-leakage, supporting steep Na(+) gradients in distal colon.
Biomaterials | 2013
Susanne M. Krug; Maren Amasheh; Isabel Dittmann; Ilya Christoffel; Michael Fromm; Salah Amasheh
Sodium caprate is a promising candidate for inducing drug absorption enhancement. The mechanism of that uptake-enhancing effect is not fully understood so far. We investigated how caprate acts in an established human intestinal cell line, HT-29/B6, on the transient opening of transcellular (across the cell membranes) and paracellular (across the tight junction) pathways. Sodium caprate (10 mm) caused a rapid and reversible decrease of transepithelial resistance which is based, as measured by two-path impedance spectroscopy, exclusively on resistance changes of the paracellular pathway. Measurements of paracellular marker fluxes revealed an increased permeability for fluorescein (330 Da) and FITC-dextran (4 and 10 kDa), indicating an opening of the paracellular barrier. Confocal microscopy revealed a marked reduction of tricellulin in tricellular tight junctions and of claudin-5 in bicellular tight junctions. This was not due to altered protein expression, as occludin, claudins or tricellulin were not significantly changed in Western blots. Visualization of the translocation site of the cell membrane-impermeable marker molecule sulpho-NHS-SS-biotin (607 Da) indicated the tricellular tight junction to be the predominant pathway. We suggest that caprates known enhancing effect on intestinal drug uptake is based on increased permeability in tricellular cell contacts, mediated by reversible removal of tricellulin from the tricellular tight junction.
Biophysical Journal | 2009
Susanne M. Krug; Michael Fromm; Dorothee Günzel
Solutes are transported across epithelial cell layers via transcellular and paracellular pathways. The transcellular pathway leads across the apical and basolateral cell membrane, whereas the paracellular pathway is directed through the tight junction. Tight junction proteins (claudins, occludin, tricellulin) can not only form barriers but also paracellular channels that are--in concert with membrane channels and transporters--regulated in a wide range in health and disease states. Thus, it is desirable to determine para- and transcellular resistance (R(para), R(trans)) separately. This cannot be achieved by conventional transepithelial resistance (TER) measurements. We present an impedance spectroscopic approach that is optimized for differentiation between these two pathways. The method is based on a transepithelial impedance measurement in specialized Ussing chambers, combined with a Ca(2+)-dependent modulation of R(para) through EGTA and flux measurements of a nonradioactive paracellular marker, fluorescein. The prerequisites are a paracellular marker that varies in parallel to 1/R(para), an experimental regime that alters R(para) without affecting R(trans), and exact knowledge of the resistance of subepithelial components. The underlying prerequisites and the applicability as a routine method were verified on cell lines of different tightness including HT-29/B6 colon cells and Madin-Darby canine kidney tubule cells C7 and C11.
Cellular and Molecular Life Sciences | 2012
Susanne M. Krug; Dorothee Günzel; Marcel P. Conrad; Rita Rosenthal; Anja Fromm; Salah Amasheh; Jörg D. Schulzke; Michael Fromm
Barrier properties of tight junctions are determined by the claudin protein family. Many claudins seal this barrier, but others form paracellular channels. Among these, no claudins with general and clear-cut anion selectivity have yet been described, while for claudin-10a and claudin-4, only circumstantial or small anion selectivities have been shown. A claudin with unknown function and tissue distribution is claudin-17. We characterized claudin-17 by overexpression and knock-down in two renal cell lines. Overexpression in MDCK C7 cell layers caused a threefold increase in paracellular anion permeability and switched these cells from cation- to anion-selective. Knockdown in LLC-PK1 cells indorsed the finding of claudin-17-based anion channels. Mutagenesis revealed that claudin-17 anion selectivity critically depends on a positive charge at position 65. Claudin-17 expression was found in two organs: marginal in brain but abundant in kidney, where expression was intense in proximal tubules and gradually decreased towards distal segments. As claudin-17 is predominantly expressed in proximal nephrons, which exhibit substantial, though molecularly not defined, paracellular chloride reabsorption, we suggest that claudin-17 has a unique physiological function in this process. In conclusion, claudin-17 forms channels within tight junctions with distinct anion preference.