Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rita Van Dingenen is active.

Publication


Featured researches published by Rita Van Dingenen.


Science | 2012

Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security

Drew T. Shindell; Johan Kuylenstierna; E. Vignati; Rita Van Dingenen; M. Amann; Z. Klimont; Susan C. Anenberg; Nicholas Z. Muller; Greet Janssens-Maenhout; Frank Raes; Joel Schwartz; Greg Faluvegi; Luca Pozzoli; Kaarle Kupiainen; Lena Höglund-Isaksson; Lisa Emberson; David G. Streets; V. Ramanathan; Kevin Hicks; N.T. Kim Oanh; George Milly; Martin L. Williams; Volodymyr Demkine; D. Fowler

Why Wait? Tropospheric ozone can be dangerous to human health, can be harmful to vegetation, and is a major contributor to climate warming. Black carbon also has significant negative effects on health and air quality and causes warming of the atmosphere. Shindell et al. (p. 183) present results of an analysis of emissions, atmospheric processes, and impacts for each of these pollutants. Seven measures were identified that, if rapidly implemented, would significantly reduce global warming over the next 50 years, with the potential to prevent millions of deaths worldwide from outdoor air pollution. Furthermore, some crop yields could be improved by decreasing agricultural damage. Most of the measures thus appear to have economic benefits well above the cost of their implementation. Reducing anthropogenic emissions of methane and black carbon would have multiple climate and health benefits. Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at


Environmental Science & Technology | 2012

Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution.

Michael Brauer; M. Amann; Rick Burnett; Aaron Cohen; Frank Dentener; Majid Ezzati; Sarah B. Henderson; Michal Krzyzanowski; Randall V. Martin; Rita Van Dingenen; Aaron van Donkelaar; George D. Thurston

700 to


Atmospheric Environment | 2000

Formation and cycling of aerosols in the global troposphere

Frank Raes; Rita Van Dingenen; E. Vignati; Julian Wilson; Jean-Philippe Putaud; John H. Seinfeld; Peter J. Adams

5000 per metric ton, which is well above typical marginal abatement costs (less than


The Lancet | 2017

Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.

Aaron Cohen; Michael Brauer; Richard T. Burnett; H. Ross Anderson; Joseph Frostad; Kara Estep; Kalpana Balakrishnan; Bert Brunekreef; Lalit Dandona; Rakhi Dandona; Valery L. Feigin; Greg Freedman; Bryan Hubbell; Haidong Kan; Luke D. Knibbs; Yang Liu; Randall V. Martin; Lidia Morawska; C. Arden Pope; Hwashin Shin; Kurt Straif; Gavin Shaddick; Matthew L. Thomas; Rita Van Dingenen; Aaron van Donkelaar; Theo Vos; Christopher J. L. Murray; Mohammad H. Forouzanfar

250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide–reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.


Environmental Science & Technology | 2016

Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013.

Michael Brauer; Greg Freedman; Joseph Frostad; Aaron van Donkelaar; Randall V. Martin; Frank Dentener; Rita Van Dingenen; Kara Estep; Heresh Amini; Joshua S. Apte; Kalpana Balakrishnan; Lars Barregard; David M. Broday; Valery L. Feigin; Santu Ghosh; Philip K. Hopke; Luke D. Knibbs; Yoshihiro Kokubo; Yang Liu; Stefan Ma; Lidia Morawska; José Luis Texcalac Sangrador; Gavin Shaddick; H. Ross Anderson; Theo Vos; Mohammad H. Forouzanfar; Richard T. Burnett; Aaron Cohen

Ambient air pollution is associated with numerous adverse health impacts. Previous assessments of global attributable disease burden have been limited to urban areas or by coarse spatial resolution of concentration estimates. Recent developments in remote sensing, global chemical-transport models, and improvements in coverage of surface measurements facilitate virtually complete spatially resolved global air pollutant concentration estimates. We combined these data to generate global estimates of long-term average ambient concentrations of fine particles (PM(2.5)) and ozone at 0.1° × 0.1° spatial resolution for 1990 and 2005. In 2005, 89% of the worlds population lived in areas where the World Health Organization Air Quality Guideline of 10 μg/m(3) PM(2.5) (annual average) was exceeded. Globally, 32% of the population lived in areas exceeding the WHO Level 1 Interim Target of 35 μg/m(3), driven by high proportions in East (76%) and South (26%) Asia. The highest seasonal ozone levels were found in North and Latin America, Europe, South and East Asia, and parts of Africa. Between 1990 and 2005 a 6% increase in global population-weighted PM(2.5) and a 1% decrease in global population-weighted ozone concentrations was apparent, highlighted by increased concentrations in East, South, and Southeast Asia and decreases in North America and Europe. Combined with spatially resolved population distributions, these estimates expand the evaluation of the global health burden associated with outdoor air pollution.


Environmental Health Perspectives | 2012

Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls

Susan C. Anenberg; Joel Schwartz; Drew T. Shindell; M. Amann; G. Faluvegi; Z. Klimont; Greet Janssens-Maenhout; Luca Pozzoli; Rita Van Dingenen; E. Vignati; Lisa Emberson; Nicholas Z. Muller; J. Jason West; Martin L. Williams; Volodymyr Demkine; W. Kevin Hicks; Johan Kuylenstierna; Frank Raes; V. Ramanathan

Aerosols are formed, evolve, and are eventually removed within the general circulation of the atmosphere. The characteristic time of many of the microphysical aerosol processes is days up to several weeks, hence longer than the residence time of the aerosol within a typical atmospheric compartment (e.g. the marine boundary layer, the free troposphere, etc.). Hence, to understand aerosol properties, one cannot confine the discussion to such compartments, but one needs to view aerosol microphysical phenomena within the context of atmospheric dynamics that connects those compartments. This paper attempts to present an integrated microphysical and dynamical picture of the global tropospheric aerosol system. It does so by reviewing the microphysical processes and those elements of the general circulation that determine the size distribution and chemical composition of the aerosol, and by implementing both types of processes in a diagnostic model, in a 3-D global Chemical Transport Model, and in a General Circulation Model. Initial results are presented regarding the formation, transformation, and cycling of aerosols within the global troposphere.


Journal of Geophysical Research | 1999

Hygroscopic properties of aerosol formed by oxidation of limonene, α-pinene, and β-pinene

Aki Virkkula; Rita Van Dingenen; Frank Raes; Jens Hjorth

Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.


Atmospheric Environment | 2001

Experimental studies of ultrafine particles in streets and the relationship to traffic

Peter Wahlina; Finn Palmgren; Rita Van Dingenen

Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the worlds population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 μg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia.


Environmental Health Perspectives | 2014

Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease

Zoë Chafe; Michael Brauer; Z. Klimont; Rita Van Dingenen; Sumi Mehta; Shilpa Rao; Keywan Riahi; Frank Dentener; Kirk R. Smith

Background: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20–40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration–response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23–34% and 7–17% and avoid 0.6–4.4 and 0.04–0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration–response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.


Journal of Geophysical Research | 1997

Observations of aerosols in the free troposphere and marine boundary layer of the subtropical Northeast Atlantic: Discussion of processes determining their size distribution

Frank Raes; Rita Van Dingenen; Emilio Cuevas; Peter F. J. van Velthoven; Joseph M. Prospero

The hygroscopic properties of aerosol formed by oxidation of three monoterpenes, limonene, α-pinene, and β-pinene, were measured using a tandem differential mobility analyzer (TDMA). The experiments were performed in the European Photoreactor (EUPHORE) in Valencia, Spain. The experiments included ozonolysis and photooxidation with and without ammonium sulfate seed aerosol. Pure organic particles, formed by oxidation of the terpenes in the absence of the seed aerosol, proved to be slightly hygroscopic. The hygroscopic growth factor (G) was close to 1.10 at relative humidity 84% ± 1%, which is often observed as the G of the less hygroscopic mode of atmospheric aerosol in field measurements. In the experiments with ammonium sulfate seed aerosol G decreased from approximately 1.5 before the start of terpene oxidation to approximately 1.1 as the oxidation products condensed on the particles. G was not proportional to the organic layer thickness but decreased with increasing organic volume fraction. Our analysis shows that in the internally mixed particles, ammonium sulfate and the organic products take up water independently of one another.

Collaboration


Dive into the Rita Van Dingenen's collaboration.

Top Co-Authors

Avatar

Frank Raes

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Brauer

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Frank Raes

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Z. Klimont

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge