Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ritika Kundra is active.

Publication


Featured researches published by Ritika Kundra.


Nature Medicine | 2017

Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients

Ahmet Zehir; Ryma Benayed; Ronak Shah; Aijazuddin Syed; Sumit Middha; Hyunjae R. Kim; Preethi Srinivasan; Jianjiong Gao; Debyani Chakravarty; Sean M. Devlin; Matthew D. Hellmann; David Barron; Alison M. Schram; Meera Hameed; Snjezana Dogan; Dara S. Ross; Jaclyn F. Hechtman; Deborah DeLair; Jinjuan Yao; Diana Mandelker; Donavan T. Cheng; Raghu Chandramohan; Abhinita Mohanty; Ryan Ptashkin; Gowtham Jayakumaran; Meera Prasad; Mustafa H Syed; Anoop Balakrishnan Rema; Zhen Y Liu; Khedoudja Nafa

Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically defined tumor types, coupled with an expanding portfolio of molecularly targeted therapies, demands flexible and comprehensive approaches to profile clinically relevant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative using a comprehensive assay, MSK-IMPACT, through which we have compiled tumor and matched normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel noncoding alterations, and mutational signatures that were shared by common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.


JCO Precision Oncology | 2017

OncoKB: A Precision Oncology Knowledge Base

Debyani Chakravarty; Jianjiong Gao; Sarah Phillips; Ritika Kundra; Hongxin Zhang; Jiaojiao Wang; Julia E. Rudolph; Rona Yaeger; Tara Soumerai; Moriah H. Nissan; Matthew T. Chang; Sarat Chandarlapaty; Tiffany A. Traina; Paul K. Paik; Alan L. Ho; Feras M. Hantash; Andrew Grupe; Shrujal S. Baxi; Margaret K. Callahan; Alexandra Snyder; Ping Chi; Daniel C. Danila; Mrinal M. Gounder; James J. Harding; Matthew D. Hellmann; Gopa Iyer; Yelena Y. Janjigian; Thomas Kaley; Douglas A. Levine; Maeve Aine Lowery

PURPOSE With prospective clinical sequencing of tumors emerging as a mainstay in cancer care, there is an urgent need for a clinical support tool that distills the clinical implications associated with specific mutation events into a standardized and easily interpretable format. To this end, we developed OncoKB, an expert-guided precision oncology knowledge base. METHODS OncoKB annotates the biological and oncogenic effect and the prognostic and predictive significance of somatic molecular alterations. Potential treatment implications are stratified by the level of evidence that a specific molecular alteration is predictive of drug response based on US Food and Drug Administration (FDA) labeling, National Comprehensive Cancer Network (NCCN) guidelines, disease-focused expert group recommendations and the scientific literature. RESULTS To date, over 3000 unique mutations, fusions, and copy number alterations in 418 cancer-associated genes have been annotated. To test the utility of OncoKB, we annotated all genomic events in 5983 primary tumor samples in 19 cancer types. Forty-one percent of samples harbored at least one potentially actionable alteration, of which 7.5% were predictive of clinical benefit from a standard treatment. OncoKB annotations are available through a public web resource (http://oncokb.org/) and are also incorporated into the cBioPortal for Cancer Genomics to facilitate the interpretation of genomic alterations by physicians and researchers. CONCLUSION OncoKB, a comprehensive and curated precision oncology knowledge base, offers oncologists detailed, evidence-based information about individual somatic mutations and structural alterations present in patient tumors with the goal of supporting optimal treatment decisions.


Cancer Discovery | 2017

Prospective Comprehensive Molecular Characterization of Lung Adenocarcinomas for Efficient Patient Matching to Approved and Emerging Therapies

Emmet Jordan; Hyunjae R. Kim; Maria E. Arcila; David Barron; Debyani Chakravarty; Jianjiong Gao; Matthew T. Chang; Andy Ni; Ritika Kundra; Philip Jonsson; Gowtham Jayakumaran; Sizhi Paul Gao; Hannah Johnsen; Aphrothiti J. Hanrahan; Ahmet Zehir; Natasha Rekhtman; Michelle S. Ginsberg; Bob T. Li; Helena A. Yu; Paul K. Paik; Alexander Drilon; Matthew D. Hellmann; Dalicia Reales; Ryma Benayed; Valerie W. Rusch; Mark G. Kris; Jamie E. Chaft; José Baselga; Barry S. Taylor; Nikolaus Schultz

Tumor genetic testing is standard of care for patients with advanced lung adenocarcinoma, but the fraction of patients who derive clinical benefit remains undefined. Here, we report the experience of 860 patients with metastatic lung adenocarcinoma analyzed prospectively for mutations in >300 cancer-associated genes. Potentially actionable genetic events were stratified into one of four levels based upon published clinical or laboratory evidence that the mutation in question confers increased sensitivity to standard or investigational therapies. Overall, 37.1% (319/860) of patients received a matched therapy guided by their tumor molecular profile. Excluding alterations associated with standard-of-care therapy, 14.4% (69/478) received matched therapy, with a clinical benefit of 52%. Use of matched therapy was strongly influenced by the level of preexistent clinical evidence that the mutation identified predicts for drug response. Analysis of genes mutated significantly more often in tumors without known actionable mutations nominated STK11 and KEAP1 as possible targetable mitogenic drivers.Significance: An increasing number of therapies that target molecular alterations required for tumor maintenance and progression have demonstrated clinical activity in patients with lung adenocarcinoma. The data reported here suggest that broader, early testing for molecular alterations that have not yet been recognized as standard-of-care predictive biomarkers of drug response could accelerate the development of targeted agents for rare mutational events and could result in improved clinical outcomes. Cancer Discov; 7(6); 596-609. ©2017 AACR.See related commentary by Liu et al., p. 555This article is highlighted in the In This Issue feature, p. 539.


Nature Genetics | 2018

The long tail of oncogenic drivers in prostate cancer.

Joshua Armenia; Stephanie A. Wankowicz; David R. Liu; Jianjiong Gao; Ritika Kundra; Ed Reznik; Walid K. Chatila; Debyani Chakravarty; G. Celine Han; Ilsa Coleman; Bruce Montgomery; Colin C. Pritchard; Colm Morrissey; Christopher E. Barbieri; Himisha Beltran; Andrea Sboner; Zafeiris Zafeiriou; Susana Miranda; Craig M. Bielski; Alexander Penson; Charlotte Tolonen; Franklin W. Huang; Dan R. Robinson; Yi Mi Wu; Robert J. Lonigro; Levi A. Garraway; Francesca Demichelis; Philip W. Kantoff; Mary-Ellen Taplin; Wassim Abida

Comprehensive genomic characterization of prostate cancer has identified recurrent alterations in genes involved in androgen signaling, DNA repair, and PI3K signaling, among others. However, larger and uniform genomic analysis may identify additional recurrently mutated genes at lower frequencies. Here we aggregate and uniformly analyze exome sequencing data from 1,013 prostate cancers. We identify and validate a new class of E26 transformation-specific (ETS)-fusion-negative tumors defined by mutations in epigenetic regulators, as well as alterations in pathways not previously implicated in prostate cancer, such as the spliceosome pathway. We find that the incidence of significantly mutated genes (SMGs) follows a long-tail distribution, with many genes mutated in less than 3% of cases. We identify a total of 97 SMGs, including 70 not previously implicated in prostate cancer, such as the ubiquitin ligase CUL3 and the transcription factor SPEN. Finally, comparing primary and metastatic prostate cancer identifies a set of genomic markers that may inform risk stratification.Meta-analysis of exome sequencing data identifies new recurrently mutated driver genes for prostate cancer. Comparison of primary and metastatic tumors further identifies genomic markers for advanced prostate cancer that may inform risk stratification.


Cancer Discovery | 2018

Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer

Yelena Y. Janjigian; Francisco Sanchez-Vega; Philip Jonsson; Walid K. Chatila; Jaclyn F. Hechtman; Geoffrey Y. Ku; Jamie Riches; Yaelle Tuvy; Ritika Kundra; Nancy Bouvier; Efsevia Vakiani; Jianjiong Gao; Zachary J. Heins; Benjamin E. Gross; David P. Kelsen; Liying Zhang; Vivian E. Strong; Mark A. Schattner; Hans Gerdes; Daniel G. Coit; Manjit S. Bains; Zsofia K. Stadler; Valerie W. Rusch; David R. Jones; Daniela Molena; Jinru Shia; Mark E. Robson; Marinela Capanu; Sumit Middha; Ahmet Zehir

The incidence of esophagogastric cancer is rapidly rising, but only a minority of patients derive durable benefit from current therapies. Chemotherapy as well as anti-HER2 and PD-1 antibodies are standard treatments. To identify predictive biomarkers of drug sensitivity and mechanisms of resistance, we implemented prospective tumor sequencing of patients with metastatic esophagogastric cancer. There was no association between homologous recombination deficiency defects and response to platinum-based chemotherapy. Patients with microsatellite instability-high tumors were intrinsically resistant to chemotherapy but more likely to achieve durable responses to immunotherapy. The single Epstein-Barr virus-positive patient achieved a durable, complete response to immunotherapy. The level of ERBB2 amplification as determined by sequencing was predictive of trastuzumab benefit. Selection for a tumor subclone lacking ERBB2 amplification, deletion of ERBB2 exon 16, and comutations in the receptor tyrosine kinase, RAS, and PI3K pathways were associated with intrinsic and/or acquired trastuzumab resistance. Prospective genomic profiling can identify patients most likely to derive durable benefit to immunotherapy and trastuzumab and guide strategies to overcome drug resistance.Significance: Clinical application of multiplex sequencing can identify biomarkers of treatment response to contemporary systemic therapies in metastatic esophagogastric cancer. This large prospective analysis sheds light on the biological complexity and the dynamic nature of therapeutic resistance in metastatic esophagogastric cancers. Cancer Discov; 8(1); 49-58. ©2017 AACR.See related commentary by Sundar and Tan, p. 14See related article by Pectasides et al., p. 37This article is highlighted in the In This Issue feature, p. 1.


Cancer Cell | 2018

Clinical Sequencing Defines the Genomic Landscape of Metastatic Colorectal Cancer

Rona Yaeger; Walid K. Chatila; Marla Lipsyc; Jaclyn F. Hechtman; Andrea Cercek; Francisco Sanchez-Vega; Gowtham Jayakumaran; Sumit Middha; Ahmet Zehir; Mark T.A. Donoghue; Daoqi You; Agnes Viale; Nancy E. Kemeny; Neil Howard Segal; Zsofia K. Stadler; Anna M. Varghese; Ritika Kundra; Jianjiong Gao; Aijazuddin Syed; David M. Hyman; Efsevia Vakiani; Neal Rosen; Barry S. Taylor; Marc Ladanyi; Michael F. Berger; David B. Solit; Jinru Shia; Leonard Saltz; Nikolaus Schultz

Metastatic colorectal cancers (mCRCs) are clinically heterogeneous, but the genomic basis of this variability remains poorly understood. We performed prospective targeted sequencing of 1,134 CRCs. We identified splice alterations in intronic regions of APC and large in-frame deletions in CTNNB1, increasing oncogenic WNT pathway alterations to 96% of CRCs. Right-sided primary site in microsatellite stable mCRC was associated with shorter survival, older age at diagnosis, increased mutations, and enrichment of oncogenic alterations in KRAS, BRAF, PIK3CA, AKT1, RNF43, and SMAD4 compared with left-sided primaries. Left-sided tumors frequently had no identifiable genetic alteration in mitogenic signaling, but exhibited higher mitogenic ligand expression. Our results suggest different pathways to tumorigenesis in right- and left-sided microsatellite stable CRC that may underlie clinical differences.


Journal of Clinical Oncology | 2016

Genetic Determinants of Cisplatin Resistance in Patients With Advanced Germ Cell Tumors

Aditya Bagrodia; Byron H. Lee; William R. Lee; Eugene K. Cha; John P. Sfakianos; Gopa Iyer; Eugene J. Pietzak; Sizhi Paul Gao; Emily C. Zabor; Irina Ostrovnaya; Samuel D. Kaffenberger; Aijazuddin Syed; Maria E. Arcila; R. S. K. Chaganti; Ritika Kundra; Jana Eng; Joseph Hreiki; Vladimir Vacic; Kanika Arora; Dayna Oschwald; Michael F. Berger; Dean F. Bajorin; Manjit S. Bains; Nikolaus Schultz; Victor E. Reuter; Joel Sheinfeld; George J. Bosl; Hikmat Al-Ahmadie; David B. Solit; Darren R. Feldman

Purpose Owing to its exquisite chemotherapy sensitivity, most patients with metastatic germ cell tumors (GCTs) are cured with cisplatin-based chemotherapy. However, up to 30% of patients with advanced GCT exhibit cisplatin resistance, which requires intensive salvage treatment, and have a 50% risk of cancer-related death. To identify a genetic basis for cisplatin resistance, we performed whole-exome and targeted sequencing of cisplatin-sensitive and cisplatin-resistant GCTs. Methods Men with GCT who received a cisplatin-containing chemotherapy regimen and had available tumor tissue were eligible to participate in this study. Whole-exome sequencing or targeted exon-capture-based sequencing was performed on 180 tumors. Patients were categorized as cisplatin sensitive or cisplatin resistant by using a combination of postchemotherapy parameters, including serum tumor marker levels, radiology, and pathology at surgical resection of residual disease. Results TP53 alterations were present exclusively in cisplatin-resistant tumors and were particularly prevalent among primary mediastinal nonseminomas (72%). TP53 pathway alterations including MDM2 amplifications were more common among patients with adverse clinical features, categorized as poor risk according to the International Germ Cell Cancer Collaborative Group (IGCCCG) model. Despite this association, TP53 and MDM2 alterations predicted adverse prognosis independent of the IGCCCG model. Actionable alterations, including novel RAC1 mutations, were detected in 55% of cisplatin-resistant GCTs. Conclusion In GCT, TP53 and MDM2 alterations were associated with cisplatin resistance and inferior outcomes, independent of the IGCCCG model. The finding of frequent TP53 alterations among mediastinal primary nonseminomas may explain the more frequent chemoresistance observed with this tumor subtype. A substantial portion of cisplatin-resistant GCTs harbor actionable alterations, which might respond to targeted therapies. Genomic profiling of patients with advanced GCT could improve current risk stratification and identify novel therapeutic approaches for patients with cisplatin-resistant disease.


JCO Precision Oncology | 2017

Prospective Genomic Profiling of Prostate Cancer Across Disease States Reveals Germline and Somatic Alterations That May Affect Clinical Decision Making

Wassim Abida; Joshua Armenia; Anuradha Gopalan; Ryan Brennan; Michael D. Walsh; David Barron; Daniel C. Danila; Dana E. Rathkopf; Michael J. Morris; Susan F. Slovin; Brigit McLaughlin; Kristen Rebecca Curtis; David M. Hyman; Jeremy C. Durack; Stephen B. Solomon; Maria E. Arcila; Ahmet Zehir; Aijazuddin Syed; Jianjiong Gao; Debyani Chakravarty; Hebert Alberto Vargas; Mark E. Robson; Joseph Vijai; Kenneth Offit; Mark T.A. Donoghue; Adam Abeshouse; Ritika Kundra; Zachary J. Heins; Alexander Penson; Christopher C. Harris

PURPOSE A long natural history and a predominant osseous pattern of metastatic spread are impediments to the adoption of precision medicine in patients with prostate cancer. To establish the feasibility of clinical genomic profiling in the disease, we performed targeted deep sequencing of tumor and normal DNA from patients with locoregional, metastatic non-castrate, and metastatic castration-resistant prostate cancer (CRPC). METHODS Patients consented to genomic analysis of their tumor and germline DNA. A hybridization capture-based clinical assay was employed to identify single nucleotide variations, small insertions and deletions, copy number alterations and structural rearrangements in over 300 cancer-related genes in tumors and matched normal blood. RESULTS We successfully sequenced 504 tumors from 451 patients with prostate cancer. Potentially actionable alterations were identified in DNA damage repair (DDR), PI3K, and MAP kinase pathways. 27% of patients harbored a germline or a somatic alteration in a DDR gene that may predict for response to PARP inhibition. Profiling of matched tumors from individual patients revealed that somatic TP53 and BRCA2 alterations arose early in tumors from patients who eventually developed metastatic disease. In contrast, comparative analysis across disease states revealed that APC alterations were enriched in metastatic tumors, while ATM alterations were specifically enriched in CRPC. CONCLUSION Through genomic profiling of prostate tumors representing the disease clinical spectrum, we identified a high frequency of potentially actionable alterations and possible drivers of disease initiation, metastasis and castration-resistance. Our findings support the routine use of tumor and germline DNA profiling for patients with advanced prostate cancer, for the purpose of guiding enrollment in targeted clinical trials and counseling families at increased risk of malignancy.


Cancer Discovery | 2017

Accelerating Discovery of Functional Mutant Alleles in Cancer

Matthew T. Chang; Tripti Shrestha Bhattarai; Alison M. Schram; Craig M. Bielski; Mark T.A. Donoghue; Philip Jonsson; Debyani Chakravarty; Sarah Phillips; Cyriac Kandoth; Alexander Penson; Alexander N. Gorelick; Tambudzai Shamu; Swati Patel; Christopher C. Harris; Jianjiong Gao; Selcuk Onur Sumer; Ritika Kundra; Pedram Razavi; Bob T. Li; Dalicia Reales; Nicholas D. Socci; Gowtham Jayakumaran; Ahmet Zehir; Ryma Benayed; Maria E. Arcila; Sarat Chandarlapaty; Marc Ladanyi; Nikolaus Schultz; José Baselga; Michael F. Berger

Most mutations in cancer are rare, which complicates the identification of therapeutically significant mutations and thus limits the clinical impact of genomic profiling in patients with cancer. Here, we analyzed 24,592 cancers including 10,336 prospectively sequenced patients with advanced disease to identify mutant residues arising more frequently than expected in the absence of selection. We identified 1,165 statistically significant hotspot mutations of which 80% arose in 1 in 1,000 or fewer patients. Of 55 recurrent in-frame indels, we validated that novel AKT1 duplications induced pathway hyperactivation and conferred AKT inhibitor sensitivity. Cancer genes exhibit different rates of hotspot discovery with increasing sample size, with few approaching saturation. Consequently, 26% of all hotspots in therapeutically actionable oncogenes were novel. Upon matching a subset of affected patients directly to molecularly targeted therapy, we observed radiographic and clinical responses. Population-scale mutant allele discovery illustrates how the identification of driver mutations in cancer is far from complete.Significance: Our systematic computational, experimental, and clinical analysis of hotspot mutations in approximately 25,000 human cancers demonstrates that the long right tail of biologically and therapeutically significant mutant alleles is still incompletely characterized. Sharing prospective genomic data will accelerate hotspot identification, thereby expanding the reach of precision oncology in patients with cancer. Cancer Discov; 8(2); 174-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 127.


Clinical Cancer Research | 2017

Small cell carcinomas of the bladder and lung are characterized by a convergent but distinct pathogenesis

Matthew T. Chang; Alexander Penson; Neil Desai; Nicholas D. Socci; Ronglai Shen; Venkatraman E. Seshan; Ritika Kundra; Adam Abeshouse; Agnes Viale; Eugene K. Cha; Xueli Hao; Victor E. Reuter; Charles M. Rudin; Bernard H. Bochner; Jonathan E. Rosenberg; Dean F. Bajorin; Nikolaus Schultz; Michael F. Berger; Gopa Iyer; David B. Solit; Hikmat Al-Ahmadie; Barry S. Taylor

Purpose: Small-cell carcinoma of the bladder (SCCB) is a rare and aggressive neuroendocrine tumor with a dismal prognosis and limited treatment options. As SCCB is histologically indistinguishable from small-cell lung cancer, a shared pathogenesis and cell of origin has been proposed. The aim of this study is to determine whether SCCBs arise from a preexisting urothelial carcinoma or share a molecular pathogenesis in common with small-cell lung cancer. Experimental Design: We performed an integrative analysis of 61 SCCB tumors to identify histology- and organ-specific similarities and differences. Results: SCCB has a high somatic mutational burden driven predominantly by an APOBEC-mediated mutational process. TP53, RB1, and TERT promoter mutations were present in nearly all samples. Although these events appeared to arise early in all affected tumors and likely reflect an evolutionary branch point that may have driven small-cell lineage differentiation, they were unlikely the founding transforming event, as they were often preceded by diverse and less common driver mutations, many of which are common in bladder urothelial cancers, but not small-cell lung tumors. Most patient tumors (72%) also underwent genome doubling (GD). Although arising at different chronologic points in the evolution of the disease, GD was often preceded by biallelic mutations in TP53 with retention of two intact copies. Conclusions: Our findings indicate that small-cell cancers of the bladder and lung have a convergent but distinct pathogenesis, with SCCBs arising from a cell of origin shared with urothelial bladder cancer. Clin Cancer Res; 24(8); 1965–73. ©2017 AACR. See related commentary by Oser and Jänne, p. 1775

Collaboration


Dive into the Ritika Kundra's collaboration.

Top Co-Authors

Avatar

Nikolaus Schultz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jianjiong Gao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ahmet Zehir

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael F. Berger

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David B. Solit

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Debyani Chakravarty

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jaclyn F. Hechtman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Walid K. Chatila

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Marc Ladanyi

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Francisco Sanchez-Vega

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge