Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ritika Uppal is active.

Publication


Featured researches published by Ritika Uppal.


Contrast Media & Molecular Imaging | 2009

Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium- and manganese-based T1 contrast agents.

Peter Caravan; Christian T. Farrar; Luca Frullano; Ritika Uppal

Simulations were performed to understand the relative contributions of molecular parameters to longitudinal (r(1)) and transverse (r(2)) relaxivity as a function of applied field, and to obtain theoretical relaxivity maxima over a range of fields to appreciate what relaxivities can be achieved experimentally. The field-dependent relaxivities of a panel of gadolinium and manganese complexes with different molecular parameters, water exchange rates, rotational correlation times, hydration state, etc. were measured to confirm that measured relaxivities were consistent with theory. The design tenets previously stressed for optimizing r(1) at low fields (very slow rotational motion; chelate immobilized by protein binding; optimized water exchange rate) do not apply at higher fields. At 1.5 T and higher fields, an intermediate rotational correlation time is desired (0.5-4 ns), while water exchange rate is not as critical to achieving a high r(1). For targeted applications it is recommended to tether a multimer of metal chelates to a protein-targeting group via a long flexible linker to decouple the slow motion of the protein from the water(s) bound to the metal ions. Per ion relaxivities of 80, 45, and 18 mM(-1) s(-1) at 1.5, 3 and 9.4 T, respectively, are feasible for Gd(3+) and Mn(2+) complexes.


Radiology | 2011

Bimodal Thrombus Imaging: Simultaneous PET/MR Imaging with a Fibrin-targeted Dual PET/MR Probe—Feasibility Study in Rat Model

Ritika Uppal; Ciprian Catana; Ilknur Ay; Thomas Benner; A. Gregory Sorensen; Peter Caravan

PURPOSE To image thrombus by using magnetic resonance (MR) imaging and positron emission tomography (PET) simultaneously in a rat arterial thrombus model with a dual PET/MR probe. MATERIALS AND METHODS Animal studies were approved by the institutional animal use committee. A dual PET/MR probe was synthesized by means of partial exchange of gadolinium for copper 64 ((64)Cu) in the fibrin-targeted MR probe EP-2104R. A preformed 25-mm thrombus was injected into the right internal carotid artery of a rat. Imaging was performed with a clinical 3.0-T MR imager with an MR-compatible human PET imager. Rats (n = 5) were imaged prior to and after systemic administration of the dual probe by using simultaneous PET/MR. The organ distribution of (64)Cu and gadolinium was determined ex vivo (n = 8), 2 hours after injection by using well counting and inductively coupled plasma mass spectrometry, respectively. Signal intensity ratios (SIRs) between the thrombus-containing and contralateral vessel were computed from PET images and MR data before and after probe administration. RESULTS The dual probe was synthesized with greater than 98% radiochemical purity. Thrombus enhancement was observed in all five animals at both MR (SIR([postprobe])/SIR([preprobe]) = 1.71 ± 0.35, P = .0053) and PET (SIR = 1.85 ± 0.48, P = .0087) after injection of the dual PET/MR probe. Ex vivo analysis at 2 hours after injection showed the highest (64)Cu and gadolinium concentrations, after the excretory organs (kidney and liver), to be in the thrombus. CONCLUSION A fibrin-targeted dual PET/MR probe enables simultaneous, direct MR and PET imaging of thrombus.


Journal of Hepatology | 2012

Molecular MR imaging of liver fibrosis: A feasibility study using rat and mouse models

Miloslav Polasek; Bryan C. Fuchs; Ritika Uppal; Daniel T. Schühle; Jamu K. Alford; Galen S. Loving; Suguru Yamada; Lan Wei; Gregory Y. Lauwers; Alexander R. Guimaraes; Kenneth K. Tanabe; Peter Caravan

BACKGROUND & AIMS Liver biopsy, the current clinical gold standard for fibrosis assessment, is invasive and has sampling errors, and is not optimal for screening, monitoring, or clinical decision-making. Fibrosis is characterized by excessive accumulation of extracellular matrix proteins including type I collagen. We hypothesize that molecular magnetic resonance imaging (MRI) with a probe targeted to type I collagen could provide a direct and non-invasive method of fibrosis assessment. METHODS Liver fibrosis was induced in rats with diethylnitrosamine and in mice with carbon tetrachloride. Animals were imaged prior to and immediately following i.v. administration of either collagen-targeted probe EP-3533 or non-targeted control Gd-DTPA. Magnetic resonance (MR) signal washout characteristics were evaluated from T1 maps and T1-weighted images. Liver tissue was subjected to pathologic scoring of fibrosis and analyzed for gadolinium and hydroxyproline. RESULTS EP-3533-enhanced MR showed greater signal intensity on delayed imaging (normalized signal enhancement mice: control=0.39 ± 0.04, fibrotic=0.55 ± 0.03, p<0.01) and slower signal washout in the fibrotic liver compared to controls (liver t(1/2)=51.3 ± 3.6 vs. 42.0 ± 2.5 min, p<0.05 and 54.5 ± 1.9 vs. 44.1 ± 2.9 min, p<0.01 for fibrotic vs. controls in rat and mouse models, respectively). Gd-DTPA-enhanced MR could not distinguish fibrotic from control animals. EP-3533 gadolinium concentration in the liver showed strong positive correlations with hydroxyproline levels (r=0.74 (rats), r=0.77 (mice)) and with Ishak scoring (r=0.84 (rats), r=0.79 (mice)). CONCLUSIONS Molecular MRI of liver fibrosis with a collagen-specific probe identifies fibrotic tissue in two rodent models of disease.


Stroke | 2010

Molecular MRI of Intracranial Thrombus in a Rat Ischemic Stroke Model

Ritika Uppal; Ilknur Ay; Guangping Dai; Young R. Kim; A. Gregory Sorensen; Peter Caravan

Background and Purpose— Intracranial thrombus is a principal feature in most ischemic stroke, and thrombus location and size may correlate with outcome and response to thrombolytic therapy. EP-2104R is a fibrin-specific molecular MR agent that has previously been shown to enhance extracranial and venous sinus thrombi in animal models and, recently, in clinical trials. In this study, we examined whether this fibrin-specific MR probe could noninvasively characterize intracranial arterial thrombi. Methods— Embolic stroke was induced in adult rats by occlusion of the right internal carotid artery with an aged thrombus. We used diffusion-weighted imaging, time of flight angiography, and high-resolution 3-dimensional T1-weighted MRI at 4.7 T before and after use of contrast agents EP-2104R (n=6) and gadopentetate dimeglumine (n=5). Results— In all animals, MR angiography revealed a flow deficit and diffusion-weighted imaging showed hyperintensity consistent with ischemia. Using EP-2104R-enhanced MRI, we saw occlusive thrombi and vessel wall enhancement in all 6 animals with high contrast to noise relative to blood, whereas gadopentetate dimeglumine-injected animals showed no occlusive thrombus or vessel wall enhancement. The concentration of gadolinium in the thrombus after EP-2104R was 18 times that in the blood pool. Conclusions— EP-2104R-enhanced MRI successfully identifies intracranial thrombus in a rat embolic stroke model.


Future Medicinal Chemistry | 2010

Targeted probes for cardiovascular MRI

Ritika Uppal; Peter Caravan

Molecular MRI plays an important role in studying molecular and cellular processes associated with heart disease. Targeted probes that recognize important biomarkers of atherosclerosis, apoptosis, necrosis, angiogenesis, thrombosis and inflammation have been developed. This review discusses the properties of chemically different contrast agents including iron oxide nanoparticles, gadolinium-based nanoparticles or micelles, discrete peptide conjugates and activatable probes. Numerous examples of contrast agents based on these approaches have been used in preclinical MRI of cardiovascular diseases. Clinical applications are still under investigation for some selected agents with highly promising initial results. Molecular MRI shows great potential for the detection and characterization of a wide range of cardiovascular diseases, as well as for monitoring response to therapy.


Journal of the American Chemical Society | 2012

Discrete bimodal probes for thrombus imaging.

Ritika Uppal; Kate L. Ciesienski; Daniel B. Chonde; Galen S. Loving; Peter Caravan

Here we report a generalizable solid/solution-phase strategy for the synthesis of discrete bimodal fibrin-targeted imaging probes. A fibrin-specific peptide was conjugated with two distinct imaging reporters at the C- and N-termini. In vitro studies demonstrated retention of fibrin affinity and specificity. Imaging studies showed that these probes could detect fibrin over a wide range of probe concentrations by optical, magnetic resonance, and positron emission tomography imaging.


Investigative Radiology | 2012

Molecular imaging of fibrin in a breast cancer xenograft mouse model.

Ritika Uppal; Zdravka Medarova; Christian T. Farrar; Guangping Dai; Anna Moore; Peter Caravan

Rationale and objectivesFibrin deposition has been indicated within the stroma of a majority of solid tumors. Here we assess the feasibility of using the established fibrin-specific probe EP-2104R for noninvasive imaging of fibrin in the context of breast cancer. MethodsEP-2104R, untargeted gadopentetate dimeglumine (Gd-DTPA), and a newly synthesized nonfibrin binding control linear peptide (CLP) were compared using steady-state and dynamic contrast-enhanced magnetic resonance imaging in a breast cancer xenograft mouse model at 9.4 T. ResultsEP-2104R transiently enhanced both tumor core and tumor periphery, but only the enhancement in the tumor periphery persisted even 90 minutes after EP-2104R administration. However, untargeted Gd-DTPA and CLP are not retained in the tumor periphery. The half-life of EP-2104R in the tumor periphery (103 ± 18 minutes) is significantly longer (P < 0.05) than that of either Gd-DTPA (29.6 ± 2.4 minutes) or CLP (42.4 ± 1.5 minutes), but the rate of clearance is similar for all the 3 probes from the tumor core. The presence of high concentrations of fibrin in the tumor periphery was corroborated using immunohistochemistry with a fibrin-specific antibody. ConclusionsThe persistent enhancement observed in the tumor periphery with EP-2104R is likely a result of its fibrin-specific binding rather than its size and demonstrates the feasibility of EP-2104R for molecular imaging of fibrin in tumor stroma.


Quantitative imaging in medicine and surgery | 2016

T2 relaxation time is related to liver fibrosis severity.

Alexander R. Guimaraes; Luiz Siqueira; Ritika Uppal; Jamu K. Alford; Bryan C. Fuchs; Suguru Yamada; Kenneth K. Tanabe; Raymond T. Chung; Gregory Y. Lauwers; Michael L. Chew; Giles W. Boland; Duhyant V. Sahani; Mark G. Vangel; Peter F. Hahn; Peter Caravan

BACKGROUND The grading of liver fibrosis relies on liver biopsy. Imaging techniques, including elastography and relaxometric, techniques have had varying success in diagnosing moderate fibrosis. The goal of this study was to determine if there is a relationship between the T2-relaxation time of hepatic parenchyma and the histologic grade of liver fibrosis in patients with hepatitis C undergoing both routine, liver MRI and liver biopsy, and to validate our methodology with phantoms and in a rat model of liver fibrosis. METHODS This study is composed of three parts: (I) 123 patients who underwent both routine, clinical liver MRI and biopsy within a 6-month period, between July 1999 and January 2010 were enrolled in a retrospective study. MR imaging was performed at 1.5 T using dual-echo turbo-spin echo equivalent pulse sequence. T2 relaxation time of liver parenchyma in patients was calculated by mono-exponential fit of a region of interest (ROI) within the right lobe correlating to histopathologic grading (Ishak 0-6) and routine serum liver inflammation [aspartate aminotransferase (AST) and alanine aminotransferase (ALT)]. Statistical comparison was performed using ordinary logistic and ordinal logistic regression and ANOVA comparing T2 to Ishak fibrosis without and using AST and ALT as covariates; (II) a phantom was prepared using serial dilutions of dextran coated magnetic iron oxide nanoparticles. T2 weighed imaging was performed by comparing a dual echo fast spin echo sequence to a Carr-Purcell-Meigboom-Gill (CPMG) multi-echo sequence at 1.5 T. Statistical comparison was performed using a paired t-test; (III) male Wistar rats receiving weekly intraperitoneal injections of phosphate buffer solution (PBS) control (n=4 rats); diethylnitrosamine (DEN) for either 5 (n=5 rats) or 8 weeks (n=4 rats) were MR imaged on a Bruker Pharmascan 4.7 T magnet with a home-built bird-cage coil. T2 was quantified by using a mono-exponential fitting algorithm on multi-slice multi echo T2 weighted data. Statistical comparison was performed using ANOVA. RESULTS (I) Histopathologic evaluation of both rat and human livers demonstrated no evidence of steatosis or hemochromatosis There was a monotonic increase in mean T2 value with increasing degree of fibrosis (control 65.4±2.9 ms, n=6 patients); mild (Ishak 1-2) 66.7±1.9 ms (n=30); moderate (Ishak 3-4) 71.6±1.7 ms (n=26); severe (Ishak 5-6) 72.4±1.4 ms (n=61); with relatively low standard error (~2.9 ms). There was a statistically significant difference between degrees of mild (Ishak <4) vs. moderate to severe fibrosis (Ishak >4) (P=0.03) based on logistic regression of T2 and Ishak, which became insignificant (P=0.07) when using inflammatory markers as covariates. Expanding on this model using ordinal logistic regression, there was significance amongst all 4 groups comparing T2 to Ishak (P=0.01), with significance using inflammation as a covariate (P=0.03) and approaching statistical significance amongst all groups by ANOVA (P=0.07); (II) there was a monotonic increase in T2 and statistical significance (ANOVA P<0.0001) between each rat subgroup [phosphate buffer solution (PBS) 25.2±0.8, DEN 5-week (31.1±1.5), and DEN 9-week (49.4±0.4) ms]; (III) the phantoms that had T2 values within the relevant range for the human liver (e.g., 20-100 ms), demonstrated no statistical difference between two point fits on turbo spin echo (TSE) data and multi-echo CPMG data (P=0.9). CONCLUSIONS The finding of increased T2 with liver fibrosis may relate to inflammation that may be an alternative or adjunct to other noninvasive MR imaging based approaches for assessing liver fibrosis.


Journal of Cardiovascular Magnetic Resonance | 2010

In vivo mri of the left coronary artery branching patterns in mice and the myocardial area-at-risk during coronary ligation: towards improved understanding of an important model

Guangping Dai; Jose-Luiz Figueiredo; Natalia C. Berry; Ritika Uppal; Cory Siegel; Peter Caravan; David E. Sosnovik

Introduction Ligation of the left coronary artery (LCA) is frequently used to study ischemia in mice. However, the branching pattern of the LCA in mice and the impact of this has not been characterized. MRI of LCA branching patterns was thus performed in mice in vivo and correlated with fluorescence reflectance imaging (FRI) of the percent myocardial area at risk (AAR) during coronary ligation.


Contrast Media & Molecular Imaging | 2009

CMR2009: 5.04: Post-mortem analysis of gadolinium distribution in NSF subjects

Peter Caravan; J. Kay; R. V. Mandal; Ritika Uppal; J. Welby; A. Deb; J. E. Penner-Hahn

Collaboration


Dive into the Ritika Uppal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge