Rivka Elbaum
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rivka Elbaum.
Plant Science | 2011
Petra Bauer; Rivka Elbaum; Ingrid M. Weiss
Plant biomineralization involves calcium and silicon transport and mineralization. Respective analytical methods and case studies are listed. Calcium carbonate is deposited in cystoliths, calcium oxalate in idioblasts. Silicon is deposited in phytoliths. Biomineralization is a coordinated process.
Faraday Discussions | 2008
Peter Fratzl; Rivka Elbaum; Ingo Burgert
The secondary plant cell wall is a composite of cellulose and a water-swelling matrix containing hemicelluloses and lignin. Recent experiments showed that this swelling capacity helps generating growth stresses, e.g., in conifer branches or in the stem when subjected to side loads. A similar mechanism also provides motility to wheat seeds. Here we study a simple mechanical model for the cell wall which--in contrast to earlier models--considers extensible cellulose fibrils in an isotropically swelling matrix. Depending on the detailed architecture of the cellulose fibrils, the model predicts that swelling may lead either to significant compressive or tensile stresses or to large movements at low stresses. The model reproduces most of the experimental observations in the wood cells and in the awns of wheat dispersal units. It is also simple enough to provide general guidelines for designing the architecture of fibres in an isotropic swelling medium to generate movements and forces of various kinds and directions.
Journal of the Royal Society Interface | 2012
Yael Abraham; Carmen Tamburu; Eugenia Klein; John W. C. Dunlop; Peter Fratzl; Uri Raviv; Rivka Elbaum
The sessile nature of plants demands the development of seed-dispersal mechanisms to establish new growing loci. Dispersal strategies of many species involve drying of the dispersal unit, which induces directed contraction and movement based on changing environmental humidity. The majority of researched hygroscopic dispersal mechanisms are based on a bilayered structure. Here, we investigate the motility of the storks bill (Erodium) seeds that relies on the tightening and loosening of a helical awn to propel itself across the surface into a safe germination place. We show that this movement is based on a specialized single layer consisting of a mechanically uniform tissue. A cell wall structure with cellulose microfibrils arranged in an unusually tilted helix causes each cell to spiral. These cells generate a macroscopic coil by spiralling collectively. A simple model made from a thread embedded in an isotropic foam matrix shows that this cellulose arrangement is indeed sufficient to induce the spiralling of the cells.
Journal of Structural Biology | 2008
Rivka Elbaum; Stanislav N. Gorb; Peter Fratzl
The dispersal unit of wild wheat bears two prominent filaments called awns. The awns bend as they dry and straighten in a damp environment. This hygroscopic movement is explained by the orientation of the cellulose fibrils that build the cell wall, as follows. The stiff fibrils are embedded in a soft hygroscopic matrix. When the cell wall dries, the matrix shrinks but the fibrils do not. Therefore, the cell wall contracts in a direction perpendicular to the fibril orientation. Using X-ray scattering we identified a region at the base of the awn that contains fibrils aligned in all directions. This is the active part, which contracts as it dries and pulls the awn to a bent position. Cryo-scanning electron microscopy revealed sequential laminas which are rotated to form a nano-scale plywood construction, implying planar local order within the global isotropy. Water molecules absorbed into the matrix probably cause large microscopic distortions by expanding neighboring layers in perpendicular directions. This is thought to cause opening of tiny gaps between fiber layers, to facilitate the exchange and the transport of water through the cell wall, and thereby to increase the sensitivity of the actuating unit to moderate changes in humidity.
Plant Physiology | 2015
Daniela Ben-Tov; Yael Abraham; Shira Stav; Kevin J Thompson; Ann E. Loraine; Rivka Elbaum; Amancio de Souza; Markus Pauly; Joseph J. Kieber; Smadar Harpaz-Saad
A previously uncharacterized protein plays a role in cellulose deposition during the course of seed coat epidermal cell differentiation. Differentiation of the maternally derived seed coat epidermal cells into mucilage secretory cells is a common adaptation in angiosperms. Recent studies identified cellulose as an important component of seed mucilage in various species. Cellulose is deposited as a set of rays that radiate from the seed upon mucilage extrusion, serving to anchor the pectic component of seed mucilage to the seed surface. Using transcriptome data encompassing the course of seed development, we identified COBRA-LIKE2 (COBL2), a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE gene family in Arabidopsis (Arabidopsis thaliana), as coexpressed with other genes involved in cellulose deposition in mucilage secretory cells. Disruption of the COBL2 gene results in substantial reduction in the rays of cellulose present in seed mucilage, along with an increased solubility of the pectic component of the mucilage. Light birefringence demonstrates a substantial decrease in crystalline cellulose deposition into the cellulosic rays of the cobl2 mutants. Moreover, crystalline cellulose deposition into the radial cell walls and the columella appears substantially compromised, as demonstrated by scanning electron microscopy and in situ quantification of light birefringence. Overall, the cobl2 mutants display about 40% reduction in whole-seed crystalline cellulose content compared with the wild type. These data establish that COBL2 plays a role in the deposition of crystalline cellulose into various secondary cell wall structures during seed coat epidermal cell differentiation.
Genes & Development | 2014
Yulia Fridman; Liron Elkouby; Neta Holland; Kristina Vragović; Rivka Elbaum; Sigal Savaldi-Goldstein
Coherent plant growth requires spatial integration of hormonal pathways and cell wall remodeling activities. However, the mechanisms governing sensitivity to hormones and how cell wall structure integrates with hormonal effects are poorly understood. We found that coordination between two types of epidermal root cells, hair and nonhair cells, establishes root sensitivity to the plant hormones brassinosteroids (BRs). While expression of the BR receptor BRASSINOSTEROID-INSENSITIVE1 (BRI1) in hair cells promotes cell elongation in all tissues, its high relative expression in nonhair cells is inhibitory. Elevated ethylene and deposition of crystalline cellulose underlie the inhibitory effect of BRI1. We propose that the relative spatial distribution of BRI1, and not its absolute level, fine-tunes growth.
New Phytologist | 2013
Yael Abraham; Rivka Elbaum
The cell walls constitute the mechanical support of plants. Crystalline cellulose building the walls forms rigid microfibrils that set the stiffness of the cell and the direction in which it expands during growth. Therefore, the determination of the directions of the microfibrils is important in both mechanical and developmental assays. We adapted polarized light microscopy to estimate the cellulose microfibril orientations at subcellular resolution. The optical information supplements X-ray scattering data, Raman microspectroscopy, and electron microscopy. We analyzed samples from three plant tissues: cells from an Araucaria excels branch, in which we revealed lower cellulose density in regions where the cell wall curvature becomes bigger, namely, the cell wall corners; a wheat (Triticum turgidum) awns hygroscopically active region, which revealed a gradient in the cellulose microfibril angles that spans across four cell rows; and a storks bills (Erodium gruinum) coiling awn, which revealed that the cellulose in the cell wall is organized in two orientations seamed together, rather than in a continuous helix. The unique spatial information is easily obtained from microscopic specimens and further illuminates new aspects in the mechanical tissues.
New Phytologist | 2013
Yael Abraham; Rivka Elbaum
The family Geraniaceae is characterized by a beak-like fruit, consisting of five seeds appended by a tapering awn. The awns exhibit coiling or bending hygroscopic movement as part of the seed dispersal strategy. Here we explain the variation in the hygroscopic reaction based on structural principles. We examined five representative species from three genera: Erodium, Geranium, and Pelargonium. Using X-ray diffraction, and electron and polarized light microscopy, we measured the cellulose microfibril angles in relation to the cell and cellulose helix axes. The behavior of separated single cells during dehydration was also examined. A bi-layered structure characterizes all the representative genera studied, with a hygroscopically contracting inner layer, and a stiff outer layer. We found that the cellulose arrangement in the inner layer is responsible for the type of awn deformation (coiling or bending). In three of the five awns examined, we identified an additional coiling outer sublayer, which adds coiling deformation to the awn. We divide the movements into three types: bending, coiling, and coiled-bending. All movement types are found in the Geranium genus. These characteristics are of importance for understanding the evolution of seed dispersal mechanisms in the Geraniaceae family.
Physiologia Plantarum | 2010
Zvi Peleg; Yehoshua Saranga; Tzion Fahima; Asaph Aharoni; Rivka Elbaum
Awns are long, stiff filamentous extensions of glumes in many grasses. In wheat, awns contribute up to 40% of the grains photosynthetic assimilates, and assist in seed dispersal. Awns accumulate silica in epidermal hairs and papillae, and silica has been positively associated with yield and environmental stress tolerance. Here, the awns of a set of domesticated wheat genotypes and their direct progenitor, Triticum turgidum ssp. dicoccoides were characterized. In addition, the silica concentration in awns was genetically dissected in a tetraploid wheat population of recombinant inbred lines (RILs) derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Scanning electron micrographs revealed a continuous silica layer under the cuticle. Extended silicification was identified in the epidermis cell wall and in sclerenchyma cells near the vascular bundles, but not in the stomata, suggesting that an active process directs the soluble silica away from the water evaporation stream. The number of silicified cells was linearly correlated to silica concentration in dry weight (DW), suggesting cellular control over silicification. Domesticated wheat awns contained up to 19% silica per DW, as compared with 7% in the wild accessions, suggesting selection pressure associated with the domestication process. Six quantitative trait loci (QTLs) for silica were identified in the awns, with a LOD score of 3.7-6.3, three of which overlapped genomic regions that contribute to high grain protein. Localization of silica in the awns and identification of QTLs help illuminate mechanisms associated with silica metabolism in wheat.
Plant Science | 2014
Rivka Elbaum; Yael Abraham
As non-motile organisms, plants develop means to spread their progenies. Hygroscopic movement is a very common mechanism employed in seed dispersal. This type of movement is created when the tissue desiccates and the cell walls dry and shrink. A contraction force develops, the direction and strength of which depends on the architecture of the tissue. This force may be utilized for a simple release of seeds, their catapultion, and for pushing seeds along the soil to a germination locus. We review the formation of a bend, a twist and a coil within various dispersal apparatuses as a reaction to the dehydration of the tissue. We compare the microscopic structures of hygroscopic devices supporting slow or fast movement, adaptations to dry or wet climates, and single use versus repeated movement. We discuss the development of the disconnecting tissues in relation to the development of a hygroscopic mechanism. As plant cultivation is dependent on seed dispersal control, we demonstrate that during the domestication of sesame and wheat, seed dispersal is avoided not due to a defective hygroscopic tissue, but rather a missing dehiscence tissue. Seed dispersal is a crucial stage in the life cycle of plants. Thus, hygroscopic movement plays a central part in plant ecology and agriculture.