Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rob Coles is active.

Publication


Featured researches published by Rob Coles.


Environmental Research Letters | 2012

A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions

Alana Grech; Katie Chartrand-Miller; P.L.A. Erftemeijer; Mark S. Fonseca; Len McKenzie; Michael Rasheed; Helen Taylor; Rob Coles

Global seagrass habitats are threatened by multiple anthropogenic factors. Effective management of seagrasses requires information on the relative impacts of threats; however, this information is rarely available. Our goal was to use the knowledge of experts to assess the relative impacts of anthropogenic activities in six global seagrass bioregions. The activities that threaten seagrasses were identified at an international seagrass workshop and followed with a web-based survey to collect seagrass vulnerability information. There was a global consensus that urban/industrial runoff, urban/port infrastructure development, agricultural runoff and dredging had the greatest impact on seagrasses, though the order of relative impacts varied by bioregion. These activities are largely terrestrially based, highlighting the need for marine planning initiatives to be co-ordinated with adjacent watershed planning. Sea level rise and increases in the severity of cyclones were ranked highest relative to other climate change related activities, but overall the five climate change activities were ranked low and experts were uncertain of their effects on seagrasses. The experts’ preferred mechanism of delivering management outcomes were processes such as policy development, planning and consultation rather than prescriptive management tools. Our approach to collecting expert opinion provides the required data to prioritize seagrass management actions at bioregional scales.


Archive | 2007

Seagrass Conservation Biology: An Interdisciplinary Science for Protection of the Seagrass Biome

W. Judson Kenworthy; Sandy Wyllie-Echeverria; Rob Coles; Christine Pergent-Martini

In the past three decades seagrass research has adopted several disciplines and matured into a global science. One of the approaches we can use to focus our science to benefit the management and protection of seagrass is that of Conservation Biology; a proactive field of science bringing together academic, government, and nongovernmental organizations from a wide range of disciplines to understand and conserve biodiversity. This relatively recent field synthesises and directs insights from many disciplines for direct application to the protection and conservation of species, communities, and biomes (Fig. 1). While the primary focus for conservation biology comes from ecology, genetics, landscape ecology, population biology and taxonomy, the discipline also incorporates analytical procedures associated with the social sciences, biogeography, and evolutionary biology (Soule and Wilcox, 1980; Soule, 1985; Meffe and Carroll, 1994; Primack, 2000). Conservation biology recognizes that humans derive both extractive and intrinsic benefit from the natural world and embraces methods and analyses utilized in fisheries science, agriculture, anthropology, economics, law, philosophy, and sociology. Today, unlike traditional approaches that were rooted in the preservation and management of selected species, conservation biologists are advising natural resource managers to focus more on an ecosystem approach that includes entire biomes, and to recognize that public trust demands comprehensive protection of biodiversity as much as sustaining the yield of harvestable organisms. Conservation biology endeavors to maintain and protect biodiversity at all spatial scales, including a variety of little understood and often overlooked life forms. In the broader meaning of biodiversity we are interested in conserving ecological services as much as life forms (sensu Randall, 1986).


Marine Pollution Bulletin | 2014

Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia

Michael Rasheed; S.A. McKenna; Alexandra Carter; Rob Coles

Tropical seagrass decline and recovery from severe storm impacts was assessed via quarterly measurements of seagrass biomass, species composition and experimental investigations of recovery in north Queensland. Shallow and deep seagrass meadows suffered major declines. Significant recovery in the two years following loss only occurred at deeper sites. Halophila spp. in deep water areas had a high capacity for recovery through the availability of seed banks. In contrast, the shallow species did not recover quickly from experimental disturbance, had poor seed reserves and relied on asexual propagation. The potential for shallow species to recover rapidly from widespread losses was limited as seed banks were limited or non-existent. Understanding inter- and intra-specific differences in seagrass recovery and how this interacts with location is critical to predict the consequences of climate events to tropical seagrasses. This is especially important as more frequent severe storms are predicted as a consequence of climate change.


Marine Pollution Bulletin | 2014

Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends

Frederick T. Short; Rob Coles; Miguel D. Fortes; Steven Victor; Maxwell Salik; Irwan Isnain; Jay Andrew; Aganto Seno

Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures.


Marine Pollution Bulletin | 2014

Seagrass meadows in a globally changing environment

Richard K. F. Unsworth; Mike van Keulen; Rob Coles

Seagrass meadows are valuable ecosystem service providers that are now being lost globally at an unprecedented rate, with water quality and other localised stressors putting their future viability in doubt. It is therefore critical that we learn more about the interactions between seagrass meadows and future environmental change in the anthropocene. This needs to be with particular reference to the consequences of poor water quality on ecosystem resilience and the effects of change on trophic interactions within the food web. Understanding and predicting the response of seagrass meadows to future environmental change requires an understanding of the natural long-term drivers of change and how these are currently influenced by anthropogenic stress. Conservation management of coastal and marine ecosystems now and in the future requires increased knowledge of how seagrass meadows respond to environmental change, and how they can be managed to be resilient to these changes. Finding solutions to such issues also requires recognising people as part of the social-ecological system. This special issue aims to further enhance this knowledge by bringing together global expertise across this field. The special issues considers issues such as ecosystem service delivery of seagrass meadows, the drivers of long-term seagrass change and the socio-economic consequences of environmental change to seagrass.


Marine Environmental Research | 2017

Identifying knowledge gaps in seagrass research and management: an Australian perspective

Paul H. York; Timothy M. Smith; Rob Coles; S.A. McKenna; Rod Martin Connolly; Andrew D. Irving; Emma L. Jackson; Kathryn McMahon; John W. Runcie; Craig D. H. Sherman; Brooke K. Sullivan; Stacy M. Trevathan-Tackett; Kasper Elgetti Brodersen; Alex Carter; Carolyn J. Ewers; Paul S. Lavery; Chris Roelfsema; Elizabeth A. Sinclair; Simone Strydom; Jason E. Tanner; Kor Jent van Dijk; Fiona Y. Warry; Michelle Waycott; Sam Whitehead

Seagrass species form important marine and estuarine habitats providing valuable ecosystem services and functions. Coastal zones that are increasingly impacted by anthropogenic development have experienced substantial declines in seagrass abundance around the world. Australia, which has some of the worlds largest seagrass meadows and is home to over half of the known species, is not immune to these losses. In 1999 a review of seagrass ecosystems knowledge was conducted in Australia and strategic research priorities were developed to provide research direction for future studies and management. Subsequent rapid evolution of seagrass research and scientific methods has led to more than 70% of peer reviewed seagrass literature being produced since that time. A workshop was held as part of the Australian Marine Sciences Association conference in July 2015 in Geelong, Victoria, to update and redefine strategic priorities in seagrass research. Participants identified 40 research questions from 10 research fields (taxonomy and systematics, physiology, population biology, sediment biogeochemistry and microbiology, ecosystem function, faunal habitats, threats, rehabilitation and restoration, mapping and monitoring, management tools) as priorities for future research on Australian seagrasses. Progress in research will rely on advances in areas such as remote sensing, genomic tools, microsensors, computer modeling, and statistical analyses. A more interdisciplinary approach will be needed to facilitate greater understanding of the complex interactions among seagrasses and their environment.


Aquatic Botany | 1991

Fruits and seeds of Thalassia hemprichii (Hydrocharitaceae) from Queensland, Australia

John Kuo; Rob Coles; Warren J. Lee Long; Jane Mellors

Abstract Fruits of Thalassia hemprichii (Ehrenb.) Aschers. have a dome-shaped capsule and form on a short peduncle. Mature fruits slit open from the upper part of the fruit and split into six to nine valves to release generally three, but occasionally one or two, pyriform seeds. The seed has an enlarged hypocotyl, and a laterally inserted embryo with leaf and root primordia protected by a cotyledon. A well-developed provascular bundle extends from the base of the embryo to the centre of the hypocotyl, where it branches and travels along the hypocotyl axis. The basal two-thirds of the hypocotyl store a large amount of starch with little protein, which is regarded as nutrient storage. A seed coat is absent. There are numerous tannin cells present in the hypocotoyl tissues and the remains of the soft pericarp. Seeds of Thalassia have no dormancy period and they probably begin to germinate before they are released. Nutrient storage is utilised initially from the apical end of the hypocotyl and around the provascular tissues.


Journal of Biosciences | 2015

Declines of seagrasses in a tropical harbour, North Queensland, Australia, are not the result of a single event.

S.A. McKenna; Jessie Jarvis; T.L. Sankey; Carissa Reason; Rob Coles; Michael Rasheed

A recent paper inferred that all seagrass in Cairns Harbour, tropical north-eastern Australia, had undergone ‘complete and catastrophic loss’ as a result of tropical cyclone Yasi in 2011. While we agree with the concern expressed, we would like to correct the suggestion that the declines were the result of a single climatic event and that all seagrass in Cairns Harbour were lost. Recent survey data and trend analysis from an on-ground monitoring program show that seagrasses in Cairns Harbour do remain, albeit at low levels, and the decline in seagrasses occurred over several years with cyclone Yasi having little additional impact. We have conducted annual on-ground surveys of seagrass distribution and the above-ground meadow biomass in Cairns Harbour and Trinity Inlet since 2001. This has shown a declining trend in biomass since a peak in 2004 and in area since it peaked in 2007. In 2012, seagrass area and above-ground biomass were significantly below the long-term (12 year) average but seagrass was still present. Declines were associated with regional impacts on coastal seagrasses from multiple years of above-average rainfall and severe storm and cyclone activity, similar to other nearby seagrass areas, and not as a result of a single event.


PLOS ONE | 2011

Interactions between a Trawl Fishery and Spatial Closures for Biodiversity Conservation in the Great Barrier Reef World Heritage Area, Australia

Alana Grech; Rob Coles

Background The Queensland East Coast Otter Trawl Fishery (ECOTF) for penaeid shrimp fishes within Australias Great Barrier Reef World Heritage Area (GBRWHA). The past decade has seen the implementation of conservation and fisheries management strategies to reduce the impact of the ECOTF on the seabed and improve biodiversity conservation. New information from electronic vessel location monitoring systems (VMS) provides an opportunity to review the interactions between the ECOTF and spatial closures for biodiversity conservation. Methodology and Results We used fishing metrics and spatial information on the distribution of closures and modelled VMS data in a geographical information system (GIS) to assess change in effort of the trawl fishery from 2001–2009 and to quantify the exposure of 70 reef, non-reef and deep water bioregions to trawl fishing. The number of trawlers and the number of days fished almost halved between 2001 and 2009 and new spatial closures introduced in 2004 reduced the area zoned available for trawl fishing by 33%. However, we found that there was only a relatively minor change in the spatial footprint of the fishery as a result of new spatial closures. Non-reef bioregions benefited the most from new spatial closures followed by deep and reef bioregions. Conclusions/Significance Although the catch of non target species remains an issue of concern for fisheries management, the small spatial footprint of the ECOTF relative to the size of the GBRWHA means that the impact on benthic habitats is likely to be negligible. The decline in effort as a result of fishing industry structural adjustment, increasing variable costs and business decisions of fishers is likely to continue a trend to fish only in the most productive areas. This will provide protection for most benthic habitats without any further legislative or management intervention.


Scientific Reports | 2017

Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores

Samantha Tol; Jessie Jarvis; Paul H. York; Alana Grech; Bradley C. Congdon; Rob Coles

Terrestrial plants use an array of animals as vectors for dispersal, however little is known of biotic dispersal of marine angiosperms such as seagrasses. Our study in the Great Barrier Reef confirms for the first time that dugongs (Dugong dugon) and green sea turtles (Chelonia mydas) assist seagrass dispersal. We demonstrate that these marine mega-herbivores consume and pass in faecal matter viable seeds for at least three seagrass species (Zostera muelleri, Halodule uninervis and Halophila decipiens). One to two seagrass seeds per g DW of faecal matter were found during the peak of the seagrass reproductive season (September to December), with viability on excretion of 9.13% ± 4.61% (SE). Using population estimates for these mega-herbivores, and data on digestion time (hrs), average daily movement (km h) and numbers of viable seagrass seeds excreted (per g DW), we calculated potential seagrass seed dispersal distances. Dugongs and green sea turtle populations within this region can disperse >500,000 viable seagrass seeds daily, with a maximum dispersal distance of approximately 650 km. Biotic dispersal of tropical seagrass seeds by dugongs and green sea turtles provides a large-scale mechanism that enhances connectivity among seagrass meadows, and aids in resilience and recovery of these coastal habitats.

Collaboration


Dive into the Rob Coles's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emmanuel Hanert

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge