Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul H. York is active.

Publication


Featured researches published by Paul H. York.


PLOS ONE | 2013

Physiological and Morphological Responses of the Temperate Seagrass Zostera muelleri to Multiple Stressors: Investigating the Interactive Effects of Light and Temperature

Paul H. York; Renee K. Gruber; Ross Hill; Peter J. Ralph; David J. Booth; Peter I. Macreadie

Understanding how multiple environmental stressors interact to affect seagrass health (measured as morphological and physiological responses) is important for responding to global declines in seagrass populations. We investigated the interactive effects of temperature stress (24, 27, 30 and 32°C) and shading stress (75, 50, 25 and 0% shade treatments) on the seagrass Zostera muelleri over a 3-month period in laboratory mesocosms. Z. muelleri is widely distributed throughout the temperate and tropical waters of south and east coasts of Australia, and is regarded as a regionally significant species. Optimal growth was observed at 27°C, whereas rapid loss of living shoots and leaf mass occurred at 32°C. We found no difference in the concentration of photosynthetic pigments among temperature treatments by the end of the experiment; however, up-regulation of photoprotective pigments was observed at 30°C. Greater levels of shade resulting in high photochemical efficiencies, while elevated irradiance suppressed effective quantum yield (ΔF/FM’). Chlorophyll fluorescence fast induction curves (FIC) revealed that the J step amplitude was significantly higher in the 0% shade treatment after 8 weeks, indicating a closure of PSII reaction centres, which likely contributed to the decline in ΔF/FM’ and photoinhibition under higher irradiance. Effective quantum yield of PSII (ΔF/FM’) declined steadily in 32°C treatments, indicating thermal damage. Higher temperatures (30°C) resulted in reduced above-ground biomass ratio and smaller leaves, while reduced light led to a reduction in leaf and shoot density, above-ground biomass ratio, shoot biomass and an increase in leaf senescence. Surprisingly, light and temperature had few interactive effects on seagrass health, even though these two stressors had strong effects on seagrass health when tested in isolation. In summary, these results demonstrate that populations of Z. muelleri in south-eastern Australia are sensitive to small chronic temperature increases and light decreases that are predicted under future climate change scenarios.


Ecology and Evolution | 2014

Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery.

Peter I. Macreadie; Paul H. York; Craig D. H. Sherman

Resilience is the ability of an ecosystem to recover from disturbance without loss of essential function. Seagrass ecosystems are key marine and estuarine habitats that are under threat from a variety of natural and anthropogenic disturbances. The ability of these ecosystems to recovery from disturbance will to a large extent depend on the internsity and scale of the disturbance, and the relative importance of sexual versus asexual reproduction within populations. Here, we investigated the resilience of Zostera muelleri seagrass (Syn. Zostera capricorni) to small-scale disturbances at four locations in Lake Macquarie – Australias largest coastal lake – and monitored recovery over a 65-week period. Resilience of Z. muelleri varied significantly with disturbance intensity; Z. muelleri recovered rapidly (within 2 weeks) from low-intensity disturbance (shoot loss), and rates of recovery appeared related to initial shoot length. Recovery via rhizome encroachment (asexual regeneration) from high-intensity disturbance (loss of entire plant) varied among locations, ranging from 18-35 weeks, whereas the ability to recover was apparently lost (at least within the time frame of this study) when recovery depended on sexual regeneration, suggesting that seeds do not provide a mechanism of recovery against intense small-scale disturbances. The lack of sexual recruits into disturbed sites is surprising as our initial surveys of genotypic diversity (using nine polymorphic microsatellite loci) at these location indicate that populations are maintained by a mix of sexual and asexual reproduction (genotypic diversity [R] varied from 0.24 to 0.44), and populations consisted of a mosaic of genotypes with on average 3.6 unique multilocus genotypes per 300 mm diameter plot. We therefore conclude that Z. muelleri populations within Lake Macquarie rely on clonal growth to recover from small-scale disturbances and that ongoing sexual recruitment by seeds into established seagrass beds (as opposed to bare areas arising from disturbance) must be the mechanism responsible for maintaining the observed mixed genetic composition of Z. muelleri seagrass meadows.


Marine Pollution Bulletin | 2015

Variability of sedimentary organic carbon in patchy seagrass landscapes

Aurora M. Ricart; Paul H. York; Michael Rasheed; Marta Pérez; Javier Romero; Catherine Bryant; Peter I. Macreadie

Seagrass ecosystems, considered among the most efficient carbon sinks worldwide, encompass a wide variety of spatial configurations in the coastal landscape. Here we evaluated the influence of the spatial configuration of seagrass meadows at small scales (metres) on carbon storage in seagrass sediments. We intensively sampled carbon stocks and other geochemical properties (δ(13)C, particle size, depositional fluxes) across seagrass-sand edges in a Zostera muelleri patchy seagrass landscape. Carbon stocks were significantly higher (ca. 20%) inside seagrass patches than at seagrass-sand edges and bare sediments. Deposition was similar among all positions and most of the carbon was from allochthonous sources. Patch level attributes (e.g. edge distance) represent important determinants of the spatial heterogeneity of carbon stocks within seagrass ecosystems. Our findings indicate that carbon stocks of seagrass areas have likely been overestimated by not considering the influence of meadow landscapes, and have important relevance for the design of seagrass carbon stock assessments.


Marine Environmental Research | 2017

Identifying knowledge gaps in seagrass research and management: an Australian perspective

Paul H. York; Timothy M. Smith; Rob Coles; S.A. McKenna; Rod Martin Connolly; Andrew D. Irving; Emma L. Jackson; Kathryn McMahon; John W. Runcie; Craig D. H. Sherman; Brooke K. Sullivan; Stacy M. Trevathan-Tackett; Kasper Elgetti Brodersen; Alex Carter; Carolyn J. Ewers; Paul S. Lavery; Chris Roelfsema; Elizabeth A. Sinclair; Simone Strydom; Jason E. Tanner; Kor Jent van Dijk; Fiona Y. Warry; Michelle Waycott; Sam Whitehead

Seagrass species form important marine and estuarine habitats providing valuable ecosystem services and functions. Coastal zones that are increasingly impacted by anthropogenic development have experienced substantial declines in seagrass abundance around the world. Australia, which has some of the worlds largest seagrass meadows and is home to over half of the known species, is not immune to these losses. In 1999 a review of seagrass ecosystems knowledge was conducted in Australia and strategic research priorities were developed to provide research direction for future studies and management. Subsequent rapid evolution of seagrass research and scientific methods has led to more than 70% of peer reviewed seagrass literature being produced since that time. A workshop was held as part of the Australian Marine Sciences Association conference in July 2015 in Geelong, Victoria, to update and redefine strategic priorities in seagrass research. Participants identified 40 research questions from 10 research fields (taxonomy and systematics, physiology, population biology, sediment biogeochemistry and microbiology, ecosystem function, faunal habitats, threats, rehabilitation and restoration, mapping and monitoring, management tools) as priorities for future research on Australian seagrasses. Progress in research will rely on advances in areas such as remote sensing, genomic tools, microsensors, computer modeling, and statistical analyses. A more interdisciplinary approach will be needed to facilitate greater understanding of the complex interactions among seagrasses and their environment.


Scientific Reports | 2015

Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program.

Paul H. York; Alex Carter; Kathryn Chartrand; T.L. Sankey; Linda Wells; Michael Rasheed

Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts.


Trends in Ecology and Evolution | 2017

Does Biodiversity–Ecosystem Function Literature Neglect Tropical Ecosystems?

David A. Clarke; Paul H. York; Michael Rasheed; Tobin D. Northfield

Current evidence suggests that there is a positive relationship between biodiversity and ecosystem functioning, but few studies have addressed tropical ecosystems where the highest levels of biodiversity occur. We develop two hypotheses for the implications of generalizing from temperate studies to tropical ecosystems, and discuss the need for more tropical research.


Conservation Genetics Resources | 2013

Microsatellite primer development for the seagrass Zostera nigricaulis (Zosteraceae)

Timothy M. Smith; Paul H. York; Annalise M. Stanley; Peter I. Macreadie; Michael J. Keough; D. Jeff Ross; Craig D. H. Sherman

Seagrasses are marine angiosperms with a worldwide distribution that form conspicuous beds in nearshore habitats. Despite being universally recognised as a foundation species that performs a number of important ecosystems functions (incl. sediment stabilisation, facilitation of biodiversity, nutrient cycling and carbon sequestration), global seagrass habitats are in decline. Resilience—the ability to recover from disturbance without switching to an alternative state—is paramount to the maintenance and persistence of seagrass habitats. Genetic diversity is a key component of seagrass resilience and contributes to an understanding of population structure, connectivity between populations, and reproductive strategies. Microsatellite primers were developed to investigate the resilience of the seagrass Zostera nigricaulis, which dominates subtidal habitats in the bays of south-eastern Australia. We also tested for cross-amplification of markers between Z. nigricaulis and previously developed markers for the sympatric species Z. muelleri to assess their applicability for use in assessing patterns of genetic diversity, population structure, and mating system. Using next-generation sequencing we isolated 11 novel microsatellite loci for Z. nigricaulis, 8 of which were polymorphic for the samples tested. Allelic diversity ranged from 1 to 8. None of the primer pairs developed for Z. nigricaulis cross-amplified in Z. muelleri; but 14 of 24 primer pairs previously developed for Z. muelleri amplified clearly in Z. nigricaulis samples with six of these showing polymorphism. The results demonstrate the applicability of the Z. nigricaulis microsatellite primers for use in the study of population genetics and limited cross-amplification with Z. muelleri.


Scientific Reports | 2017

Long distance biotic dispersal of tropical seagrass seeds by marine mega-herbivores

Samantha Tol; Jessie Jarvis; Paul H. York; Alana Grech; Bradley C. Congdon; Rob Coles

Terrestrial plants use an array of animals as vectors for dispersal, however little is known of biotic dispersal of marine angiosperms such as seagrasses. Our study in the Great Barrier Reef confirms for the first time that dugongs (Dugong dugon) and green sea turtles (Chelonia mydas) assist seagrass dispersal. We demonstrate that these marine mega-herbivores consume and pass in faecal matter viable seeds for at least three seagrass species (Zostera muelleri, Halodule uninervis and Halophila decipiens). One to two seagrass seeds per g DW of faecal matter were found during the peak of the seagrass reproductive season (September to December), with viability on excretion of 9.13% ± 4.61% (SE). Using population estimates for these mega-herbivores, and data on digestion time (hrs), average daily movement (km h) and numbers of viable seagrass seeds excreted (per g DW), we calculated potential seagrass seed dispersal distances. Dugongs and green sea turtle populations within this region can disperse >500,000 viable seagrass seeds daily, with a maximum dispersal distance of approximately 650 km. Biotic dispersal of tropical seagrass seeds by dugongs and green sea turtles provides a large-scale mechanism that enhances connectivity among seagrass meadows, and aids in resilience and recovery of these coastal habitats.


Scientific Reports | 2015

Evaluation of Reference Genes for RT-qPCR Studies in the Seagrass Zostera muelleri Exposed to Light Limitation

Martin Schliep; Mathieu Pernice; Sutinee Sinutok; Catherine Bryant; Paul H. York; Michael Rasheed; Peter J. Ralph

Seagrass meadows are threatened by coastal development and global change. In the face of these pressures, molecular techniques such as reverse transcription quantitative real-time PCR (RT-qPCR) have great potential to improve management of these ecosystems by allowing early detection of chronic stress. In RT-qPCR, the expression levels of target genes are estimated on the basis of reference genes, in order to control for RNA variations. Although determination of suitable reference genes is critical for RT-qPCR studies, reports on the evaluation of reference genes are still absent for the major Australian species Zostera muelleri subsp. capricorni (Z. muelleri). Here, we used three different software (geNorm, NormFinder and Bestkeeper) to evaluate ten widely used reference genes according to their expression stability in Z. muelleri exposed to light limitation. We then combined results from different software and used a consensus rank of four best reference genes to validate regulation in Photosystem I reaction center subunit IV B and Heat Stress Transcription factor A- gene expression in Z. muelleri under light limitation. This study provides the first comprehensive list of reference genes in Z. muelleri and demonstrates RT-qPCR as an effective tool to identify early responses to light limitation in seagrass.


Nature Communications | 2017

Timing anthropogenic stressors to mitigate their impact on marine ecosystem resilience

Paul P. Wu; Kerrie Mengersen; Kathryn McMahon; Gary A. Kendrick; Kathryn Chartrand; Paul H. York; Michael Rasheed; M. Julian Caley

Better mitigation of anthropogenic stressors on marine ecosystems is urgently needed to address increasing biodiversity losses worldwide. We explore opportunities for stressor mitigation using whole-of-systems modelling of ecological resilience, accounting for complex interactions between stressors, their timing and duration, background environmental conditions and biological processes. We then search for ecological windows, times when stressors minimally impact ecological resilience, defined here as risk, recovery and resistance. We show for 28 globally distributed seagrass meadows that stressor scheduling that exploits ecological windows for dredging campaigns can achieve up to a fourfold reduction in recovery time and 35% reduction in extinction risk. Although the timing and length of windows vary among sites to some degree, global trends indicate favourable windows in autumn and winter. Our results demonstrate that resilience is dynamic with respect to space, time and stressors, varying most strongly with: (i) the life history of the seagrass genus and (ii) the duration and timing of the impacting stress.Stressors such as sediment dredging can harm marine organisms, but this impact could be minimised if targeted within ‘ecological windows’. Here, Wu and colleagues develop a modelling framework to identify ecological windows that maximise seagrass resilience under varying dredging schedules.

Collaboration


Dive into the Paul H. York's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary A. Kendrick

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge