Rob Haselberg
VU University Amsterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rob Haselberg.
Electrophoresis | 2011
Rob Haselberg; Gerhardus J. de Jong; Govert W. Somsen
CE coupled to MS has proven to be a powerful analytical tool for the characterization of intact proteins, as it combines the high separation efficiency of CE with the selectivity of MS. This review provides an overview of the development and application of CE‐MS methods within the field of intact protein analysis as published between January 2007 and June 2010. Ongoing technological developments with respect to CE‐MS interfacing, capillary coatings for CE‐MS, coupling of CIEF with MS and chip‐based CE‐MS are treated. Furthermore, CE‐MS of intact proteins involving ESI, MALDI and ICP ionization is outlined and overviews of the use of the various CE‐MS methods are provided by tables. Representative examples illustrate the applicability of CE‐MS for the characterization of proteins, including glycoproteins, biopharmaceuticals, protein–ligand complexes, biomarkers and dietary proteins. It is concluded that CE‐MS is a valuable technique with high potential for intact protein analysis, providing useful information on protein identity and purity, including modifications and degradation products.
Analytical Chemistry | 2013
Rob Haselberg; G.J. de Jong; Govert W. Somsen
Capillary electrophoresis coupled to time-of-flight mass spectrometry (CE-TOF-MS) via a porous tip sheathless electrospray ionization (ESI) interface was studied for the characterization of pharmaceutical glycoproteins. To achieve optimal glycoform separation, background electrolytes of low pH were used in conjunction with a capillary with a neutral coating exhibiting near-zero electroosmotic flow. Crucial interfacing parameters, like ESI voltage and ESI tip-to-end plate distance, were optimized for very low flow rates (∼5 nL/min) in order to attain maximum sensitivity and stable performance. Under optimal conditions, the sheathless CE-MS interface provided significantly increased ionization efficiencies for intact proteins and decreased ionization suppression leading to detection limits in the picomolar-range. Analysis of a sample of recombinant human interferon-β allowed the assignment of at least 18 glycoforms, plus a variety of deamidation, succinimide, and oxidation products, representing a considerable improvement over sheath-liquid CE-MS. The sheathless CE-MS system also proved highly suitable for the glycoprofiling of recombinant human erythropoietin, revealing 74 glycoforms in a 60-min run. In addition, oxidation and acetylation products were detected, overall resulting in assignment of more than 250 different isoforms. Semiquantitative glycoprofiles could be derived for both pharmaceutical proteins, with estimated glycoform concentrations analyzed ranging from 0.35 to 950 nM. These profiles may be very useful for quality control of biopharmaceuticals and their biosimilars.
Pharmaceutical Research | 2011
Vera Brinks; Andrea Hawe; Abdul Hafid Basmeleh; Liliana Joachin-Rodriguez; Rob Haselberg; Govert W. Somsen; Wim Jiskoot; Huub Schellekens
ABSTRACTPurposeTo compare the quality of therapeutic erythropoietin (EPO) products, including two biosimilars, with respect to content, aggregation, isoform profile and potency.MethodsTwo original products, Eprex (epoetin alfa) and Dynepo (epoetin delta), and two biosimilar products, Binocrit (epoetin alfa) and Retacrit (epoetin zeta), were compared using (1) high performance size exclusion chromatography, (2) ELISA, (3) SDS-PAGE, (4) capillary zone electrophoresis and (5) in-vivo potency.ResultsTested EPO products differed in content, isoform composition, and potency.ConclusionOf the tested products, the biosimilars have the same or even better quality as the originals. Especially, the potency of originals may significantly differ from the value on the label.
Journal of Chromatography A | 2010
Rob Haselberg; Chitra K. Ratnayake; Gerhardus J. de Jong; Govert W. Somsen
The performance of a prototype porous tip sprayer for sheathless capillary electrophoresis-mass spectrometry (CE-MS) of intact proteins was studied. Capillaries with a porous tip were inserted in a stainless steel needle filled with static conductive liquid and installed in a conventional electrospray ionization (ESI) source. Using a BGE of 100 mM acetic acid (pH 3.1) and a positively charged capillary coating, a highly reproducible and efficient separation of four model proteins (insulin, carbonic anhydrase II, ribonuclease A and lysozyme) was obtained. The protein mass spectra were of good quality allowing reliable mass determination of the proteins and some of their impurities. Sheath-liquid CE-MS using the same porous tip capillary and an isopropanol-water-acetic acid sheath liquid showed slightly lower to similar analyte responses. However, as noise levels increased with sheath-liquid CE-MS, detection limits were improved by a factor 6.5-20 with sheathless CE-MS. The analyte response in sheathless CE-MS could be enhanced using a nanoESI source and adding 5% isopropanol to the BGE, leading to improved detection limits by 50-fold to 140-fold as compared to sheath liquid interfacing using the same capillary - equivalent to sub-nM detection limits for three out of four proteins. Clearly, the sheathless porous tip sprayer provides high sensitivity CE-MS of intact proteins.
Electrophoresis | 2013
Rob Haselberg; Gerhardus J. de Jong; Govert W. Somsen
Since its introduction in 1987, CE‐MS has become an increasingly important technique for the analysis of biomolecules. Since our previous update on CE‐MS methods within the field of intact protein analysis (Electrophoresis 2011, 32, 66–82), a variety of interesting methodological improvements and applications have been reported in literature. Therefore, this article presents an overview of the development and application of CE‐MS for intact protein analysis as published between June 2010 and June 2012. The article is divided in sections that treat CE coupled to MS through ESI, MALDI, and ICP ionization, respectively. In the section about CE‐ESI‐MS, technological developments with respect to CE‐MS interfacing, prevention of protein adsorption, and chip‐based CE‐MS are treated in more detail. Novel interfacing strategies and the development of improved capillary coating strategies appeared to be the major developments. Furthermore, in all sections, the applicability of CE‐MS for intact protein analysis is demonstrated by representative examples, including important developments in the fields of biopharmaceutical characterization and the analysis of proteins in biological samples. Finally, some general conclusions and future perspectives are given.
Analytical and Bioanalytical Chemistry | 2011
Rob Haselberg; V. Brinks; A. Hawe; G. J. de Jong; Govert W. Somsen
In this work, the usefulness of capillary electrophoresis–electrospray ionization time-of-flight–mass spectrometry for the analysis of biopharmaceuticals was studied. Noncovalently bound capillary coatings consisting of Polybrene-poly(vinyl sulfonic acid) or Polybrene-dextran sulfate-Polybrene were used to minimize protein and peptide adsorption, and achieve good separation efficiencies. The potential of the capillary electrophoresis-mass spectrometry (CE-MS) system to characterize degradation products was investigated by analyzing samples of the drugs, recombinant human growth hormone (rhGH) and oxytocin, which had been subjected to prolonged storage, heat exposure, and/or different pH values. Modifications could be assigned based on accurate masses as obtained with time-of-flight–mass spectrometry (TOF-MS) and migration times with respect to the parent compound. For heat-exposed rhGH, oxidations, sulfonate formation, and deamidations were observed. Oxytocin showed strong deamidation (up to 40%) upon heat exposure at low pH, whereas at medium and high pH, mainly dimer (>10%) and trisulfide formation (6–7%) occurred. Recombinant human interferon-β-1a (rhIFN-β) was used to evaluate the capability of the CE-MS method to assess glycan heterogeneity of pharmaceutical proteins. Analysis of this N-glycosylated protein revealed a cluster of resolved peaks which appeared to be caused by at least ten glycoforms differing merely in sialic acid and hexose N-acetylhexosamine composition. Based on the relative peak area (assuming an equimolar response per glycoform), a quantitative profile could be derived with the disialytated biantennary glycoform as most abundant (52%). Such a profile may be useful for in-process and quality control of rhIFN-β batches. It is concluded that the separation power provided by combined capillary electrophoresis and TOF-MS allows discrimination of highly related protein species.
Journal of Controlled Release | 2012
Roy van der Meel; Sabrina Oliveira; Isil Altintas; Rob Haselberg; Joris van der Veeken; Rob C. Roovers; Paul M.P. van Bergen en Henegouwen; Gert Storm; Wim E. Hennink; Raymond M. Schiffelers; Robbert J. Kok
The epidermal growth factor receptor (EGFR) is a validated target for anti-cancer therapy and several EGFR inhibitors are used in the clinic. Over the years, an increasing number of studies have reported on the crosstalk between EGFR and other receptors that can contribute to accelerated cancer development or even acquisition of resistance to anti-EGFR therapies. Combined targeting of EGFR and insulin-like growth factor 1 receptor (IGF-1R) is a rational strategy to potentiate anti-cancer treatment and possibly retard resistance development. In the present study, we have pursued this by encapsulating the kinase inhibitor AG538 in anti-EGFR nanobody-liposomes. The thus developed dual-active nanobody-liposomes associated with EGFR-(over)expressing cells in an EGFR-specific manner and blocked both EGFR and IGF-1R activation, due to the presence of the EGFR-blocking nanobody EGa1 and the anti-IGF-1R kinase inhibitor AG538 respectively. AG538-loaded nanobody-liposomes induced a strong inhibition of tumor cell proliferation even upon short-term exposure followed by a drug-free wash-out period. Therefore, AG538-loaded nanobody-liposomes are a promising anti-cancer formulation due to efficient intracellular delivery of AG538 in combination with antagonistic and downregulating properties of the EGa1 nanobody-liposomes.
Analytica Chimica Acta | 2010
Rob Haselberg; Gerhardus J. de Jong; Govert W. Somsen
A capillary electrophoresis-mass spectrometry (CE-MS) method using sheath liquid electrospray ionization interfacing was studied and optimized for the analysis of intact basic proteins. To prevent protein adsorption, capillaries with a noncovalent positively charged coating were utilized. Capillaries were coated by subsequent rinsing with solutions of Polybrene, dextran sulfate and Polybrene. The coating proved to be fully compatible with MS detection, causing no background signals and ionization suppression. The composition of the sheath liquid and BGE was optimized using the model proteins α-chymotrypsinogen A, ribonuclease A, lysozyme and cytochrome c. A sheath liquid of isopropanol-water-acetic acid (75:25:0.1, v/v/v) at 2 μL min(-1) resulted in optimal signal intensities for most proteins, but caused dissociation of the heme group of cytochrome c. Optimum protein responses were obtained with a BGE of 50 mM acetic acid (pH 3.0), which allowed a baseline separation of the test protein mixture. Several minor impurities present in the mixture could be detected and provisionally identified using accurate mass and a protein modification database. The selectivity of the CE-MS system was investigated by the analysis of acetylated lysozyme. Eight highly related species, identified as non-acetylated lysozyme and lysozyme acetylated in various degrees, could be distinguished. The CE-MS system showed good reproducibility yielding interday (three weeks period) RSDs for migration time and peak area within 2% and 10%, respectively. With the CE-MS system, determination coefficients (R(2)) for protein concentration and peak area were higher than 0.996, whereas detection limits were between 11 and 19 nM.
Journal of Separation Science | 2009
Rob Haselberg; Gerhardus J. de Jong; Govert W. Somsen
The usefulness of a noncovalent, positively charged capillary coating for the efficient analysis of intact basic proteins with CE was studied. Capillaries were coated by subsequent flushing with solutions of 10% w/v Polybrene (PB), 3% w/v dextran sulfate (DS), and again 10% w/v PB. Coating characterization studies showed that stable coatings could be produced which exhibited a pH-independent and highly reproducible EOF. The PB-DS-PB coating was evaluated with Tris phosphate BGEs of various pH using the four basic model proteins: alpha-chymotrypsinogen A, ribonuclease A, cytochrome c, and lysozyme. Typical migration time RSDs for the proteins were less than 0.85%, and apparent plate numbers were above 125,000 using a capillary length of 40 cm. The high separation efficiency allowed detection of several minor impurities in the model proteins. Using a BGE of medium pH, the CE system with triple-layer coating appeared to be useful for the repeatable profiling of recombinant humanized mouse monoclonal immunoglobulin G(1) showing a characteristic pattern of glycoforms. The CE system was also applied to the characterization of two llama antibodies, which were produced in Saccharomyces cerevisiae, revealing the presence of a side product in one of the antibodies. The high migration time stability allowed the reliable determination of antibody-antigen binding by monitoring migration time shifts. Finally, the feasibility of using the PB-DS-PB coated capillaries for CE with mass spectrometric detection was shown by the characterization of the impure llama antibody sample.
Analytica Chimica Acta | 2011
Rob Haselberg; Stefan Harmsen; M.E.M. Dolman; G. J. de Jong; Robbert J. Kok; Govert W. Somsen
Drug-protein conjugates have been widely used for the cell-specific targeting of drugs to cells that can bind and internalize the proteinaceous carrier. For renal drug targeting, lysozyme (LZM) can be used as an effective carrier that accumulates in proximal tubular cells. We used capillary electrophoresis-time-of-flight mass spectrometry (CE-TOF-MS) for the characterization of different drug-LZM conjugates. A recently developed prototype porous tip sprayer was employed for sheathless electrospray ionization (ESI) CE-MS interfacing. In order to prevent adsorption of LZM conjugates to the capillary wall, a positively charged polyethylenimine capillary coating was used in combination with a low-pH background electrolyte. Drug-LZM products had been prepared by first coupling BOC-l-methionine hydroxysuccinimide ester (BOCmet) to lysine residues of LZM followed by conjugation with the kinase inhibitors LY364947, erlotinib, or Y27632 via a platinum(II)-based linker. CE-TOF-MS of each preparation showed narrow symmetrical peaks for the various reaction products demonstrating that drug-LZM conjugates remained stable during the CE analysis and subsequent ESI. Components observed in the drug-LZM products were assigned based on their relative migration times and on molecular mass as obtained by TOF-MS. The TOF-MS data obtained for the individual components revealed that the preparations contained LZM carrying one or two drug molecules, next to unmodified and BOCmet-modified LZM. Based on relative peak areas (assuming an equimolar response for each component) a quantitative conjugate profile could be derived for every preparation leading to drug loading values of 0.4-0.6 mol drug per mole protein.