Rob Stierum
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rob Stierum.
Biochemical Pharmacology | 2003
Wilbert H. M. Heijne; Rob Stierum; Monique Slijper; Peter J. van Bladeren; Ben van Ommen
Toxicogenomics is a novel approach integrating the expression analysis of thousands of genes (transcriptomics) or proteins (proteomics) with classical methods in toxicology. Effects at the molecular level are related to pathophysiological changes of the organisms, enabling detailed comparison of mechanisms and early detection and prediction of toxicity. This report addresses the value of the combined use of transcriptomics and proteomics technologies in toxicology. Acute hepatotoxicity was induced in rats by bromobenzene administration resulting in depleted glutathione levels and reduced average body weights, 24hr after dosage. These physiological symptoms coincided with many changes of hepatic mRNA and protein content. Gene induction confirmed involvement of glutathione-S-transferase isozymes and epoxide hydrolase in bromobenzene metabolism and identified many genes possibly relevant in bromobenzene toxicity. Observed glutathione depletion coincided with induction of the key enzyme in glutathione biosynthesis, gamma-glutamylcysteine synthetase. Oxidative stress was apparent from strong upregulation of heme oxygenase, peroxiredoxin 1 and other genes. Bromobenzene-induced protein degradation was suggested from two-dimensional gel electrophoresis, upregulated mRNA levels for proteasome subunits and lysosomal cathepsin L, whereas also genes were upregulated with a role in protein synthesis. Both protein and gene expression profiles from treated rats were clearly distinct from controls as shown by principal component analysis, and several proteins found to significantly change upon bromobenzene treatment were identified by mass spectrometry. A modest overlap in results from proteomics and transcriptomics was found. This work indicates that transcriptomics and proteomics technologies are complementary to each other and provide new possibilities in molecular toxicology.
Toxicological Sciences | 2009
Anne S. Kienhuis; Marcel C. G. van de Poll; Heleen Wortelboer; Marcel van Herwijnen; Ralph W.H. Gottschalk; Cornelis H. C. Dejong; André Boorsma; Richard S. Paules; Jos Kleinjans; Rob Stierum; Joost H.M. van Delft
The frequent use of rodent hepatic in vitro systems in pharmacological and toxicological investigations challenges extrapolation of in vitro results to the situation in vivo and interspecies extrapolation from rodents to humans. The toxicogenomics approach may aid in evaluating relevance of these model systems for human risk assessment by direct comparison of toxicant-induced gene expression profiles and infers mechanisms between several systems. In the present study, acetaminophen (APAP) was used as a model compound to compare gene expression responses between rat and human using in vitro cellular models, hepatocytes, and between rat in vitro and in vivo. Comparison at the level of modulated biochemical pathways and biological processes rather than at that of individual genes appears preferable as it increases the overlap between various systems. Pathway analysis by T-profiler revealed similar biochemical pathways and biological processes repressed in rat and human hepatocytes in vitro, as well as in rat liver in vitro and in vivo. Repressed pathways comprised energy-consuming biochemical pathways, mitochondrial function, and oxidoreductase activity. The present study is the first that used a toxicogenomics-based parallelogram approach, extrapolating in vitro to in vivo and interspecies, to reveal relevant mechanisms indicative of APAP-induced liver toxicity in humans in vivo.
Toxicology | 2008
C. Frieke Kuper; Rob Stierum; André Boorsma; Marcel A. Schijf; Menk K. Prinsen; Joost P. Bruijntjes; Nanne Bloksma; Josje H.E. Arts
All LMW respiratory allergens known to date can also induce skin allergy in test animals. The question here was if in turn skin allergens can induce allergy in the respiratory tract. Respiratory allergy was tested in Th2-prone Brown Norway (BN) rats by dermal sensitization with the contact allergen dinitrochlorobenzene (DNCB; 1%, day 0; 0.5%, day 7) and a head/nose-only inhalation challenge of 27mg/m3 of DNCB (15 min, day 21), using a protocol that successfully identified chemical respiratory allergens. Skin allergy to DNCB was examined in BN rats and Th1-prone Wistar rats in a local lymph node assay followed by a topical patch challenge of 0.1% DNCB. Sensitization of BN rats via the skin induced DNCB-specific IgG in serum, but not in all animals, and an increased number of CD4+ cells in the lung parenchyma. Subsequent inhalation challenge with DNCB did not provoke apneas or allergic inflammation (signs of respiratory allergy) in the BN rats. However, microarray analysis of mRNA isolated from the lung revealed upregulation of the genes for Ccl2 (MCP-1), Ccl4 (MIP-1beta), Ccl7 and Ccl17. Skin challenge induced considerably less skin irritation and allergic dermatitis in the BN rat than in the Wistar rat. In conclusion, the Th2-prone BN rat appeared less sensitive to DNCB than the Wistar rat; nevertheless, DNCB induced allergic inflammation in the skin of BN rats but even a relatively high challenge concentration did not induce allergy in the respiratory tract, although genes associated with allergy were upregulated in lung tissue.
Reproductive Toxicology | 2012
Anna Beker van Woudenberg; Mariska Gröllers-Mulderij; Cor Snel; Nelleke Jeurissen; Rob Stierum; Andre Wolterbeek
Reproductive toxicity testing according to the present guidelines requires a high number of animals. Therefore, the development of alternative in vitro methods is urgently required. The aim of the present study was to investigate the applicability domain of the bovine oocyte in vitro maturation assay (bIVM) to study female reproductive toxicology. Therefore, bovine oocytes were exposed to a broad set of chemicals of two distinct biological function groups: (a) affecting female fertility and (b) affecting embryonic development and having a broad range of physical and chemical properties. The endpoints evaluated were the oocyte nuclear maturation (progression of meiosis) and general cytotoxicity. The oocyte nuclear maturation was negatively affected by all compounds tested and the effect was observed at concentrations lower than the cytotoxic ones. The bIVM assay correctly predicted the classification of compounds between those predefined groups. Additionally, the bIVM model contributes significantly for the 3R principle, since no test animals are used in this assay. In conclusion, the bIVM is a sensitive and valuable alternative assay to identify potential chemical hazard on female fertility.
Nutrition and Cancer | 1998
Geja J. Hageman; Rob Stierum; M.H.M. van Herwijnen; M. S. E. Van Der Veer; Jos Kleinjans
As a substrate for poly(ADP-ribose) polymerase (PARP; EC, 2.4.2.30), an enzyme that is activated by DNA strand breaks and is thought to facilitate efficient DNA repair, NAD+ and its precursor nicotinic acid (niacin) are involved in the cellular defense against DNA damage by genotoxic compounds. In this study, the effect of nicotinic acid supplementation on cytogenetic damage and poly(ADP-ribosylation) was evaluated in a human population that is continuously exposed to genotoxic agents, e.g., smokers. By use of a placebo-controlled intervention design, 21 healthy smokers received supplementary nicotinic acid at 0-100 mg/day for 14 weeks. An increased niacin status, as assessed from blood nicotinamide concentrations and lymphocyte NAD+ concentrations, was observed in groups supplemented with 50 and 100 mg/day. This effect was most pronounced in subjects with lower initial NAD+ levels. An increased niacin status did not result in decreased hypoxanthine guanine phosphoribosyltransferase variant frequencies and micronuclei induction in peripheral blood lymphocytes (PBLs). Sister chromatid exchanges in PBLs, however, were increased after supplementation with nicotinic acid. This increase was positively associated with the daily dose of nicotinic acid. No effects of nicotinic acid supplementation were found for ex vivo (+/-)-7 beta, 8 alpha-dihydroxy-9 alpha, 10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene-induced poly(ADP-ribosylation), although the small number of samples that could be analyzed (n = 12) does not allow firm conclusions. Because no evidence was found for a decrease in cigarette smoke-induced cytogenetic damage in PBLs of smokers after nicotinic acid supplementation of up to 100 mg/day, it is concluded that supplemental niacin does not contribute to a reduced genetic risk in healthy smokers.
Critical Reviews in Toxicology | 2014
Jochem W. van der Veen; Lya G. Soeteman-Hernández; Janine Ezendam; Rob Stierum; Frieke Kuper; Henk van Loveren
Abstract Allergic contact dermatitis (ACD) is a hypersensitivity immune response induced by small protein-reactive chemicals. Currently, the murine local lymph node assay (LLNA) provides hazard identification and quantitative estimation of sensitizing potency. Given the complexity of ACD, a single alternative method cannot replace the LLNA, but it is necessary to combine methods through an integrated testing strategy (ITS). In the development of an ITS, information regarding mechanisms and molecular processes involved in skin sensitization is crucial. The recently published adverse outcome pathway (AOP) for skin sensitization captures mechanistic knowledge into key events that lead to ACD. To understand the molecular processes in ACD, a systematic review of murine in vivo studies was performed and an ACD molecular map was constructed. In addition, comparing the molecular map to the limited human in vivo toxicogenomic data available suggests that certain processes are similarly triggered in mice and humans, but additional human data will be needed to confirm these findings and identify differences. To gain insight in the molecular mechanisms represented by various human in vitro systems, the map was compared to in vitro toxicogenomic data. This analysis allows for comparison of emerging in vitro methods on a molecular basis, in addition to mathematical predictive value. Finally, a survey of the current in silico, in chemico, and in vitro methods was used to indicate which AOP key event is modeled by each method. By anchoring emerging classification methods to the AOP and the ACD molecular map, complementing methods can be identified, which provides a cornerstone for the development of a testing strategy that accurately reflects the key events in skin sensitization.
Toxicological Sciences | 2013
Marijana Radonjic; Natalie L. M. Cappaert; Erik F. J. de Vries; Celine de Esch; F. Kuper; Aren van Waarde; Rudi Dierckx; Wytse J. Wadman; Andre Wolterbeek; Rob Stierum; Didima de Groot
Maternal exposure to the neurotoxin methylmercury (MeHg) has been shown to have adverse effects on neural development of the offspring in man. Little is known about the underlying mechanisms by which MeHg affects the developing brain. To explore the neurodevelopmental defects and the underlying mechanism associated with MeHg exposure, the cerebellum and cerebrum of Wistar rat pups were analyzed by [(18)F]FDG PET functional imaging, field potential analysis, and microarray gene expression profiling. Female rat pups were exposed to MeHg via maternal diet during intrauterinal and lactational period (from gestational day 6 to postnatal day (PND)10), and their brain tissues were sampled for the analysis at weaning (PND18-21) and adulthood (PND61-70). The [(18)F]FDG PET imaging and field potential analysis suggested a delay in brain activity and impaired neural function by MeHg. Genome-wide transcriptome analysis substantiated these findings by showing (1) a delay in the onset of gene expression related to neural development, and (2) alterations in pathways related to both structural and functional aspects of nervous system development. The latter included changes in gene expression of developmental regulators, developmental phase-associated genes, small GTPase signaling molecules, and representatives of all processes required for synaptic transmission. These findings were observed at dose levels at which only marginal changes in conventional developmental toxicity endpoints were detected. Therefore, the approaches applied in this study are promising in terms of yielding increased sensitivity compared with classical developmental toxicity tests.
BMC Medical Genomics | 2013
Kristina M. Hettne; André Boorsma; Dorien A.M. van Dartel; Jelle J. Goeman; Esther de Jong; Aldert H. Piersma; Rob Stierum; Jos Kleinjans; Jan A. Kors
BackgroundAvailability of chemical response-specific lists of genes (gene sets) for pharmacological and/or toxic effect prediction for compounds is limited. We hypothesize that more gene sets can be created by next-generation text mining (next-gen TM), and that these can be used with gene set analysis (GSA) methods for chemical treatment identification, for pharmacological mechanism elucidation, and for comparing compound toxicity profiles.MethodsWe created 30,211 chemical response-specific gene sets for human and mouse by next-gen TM, and derived 1,189 (human) and 588 (mouse) gene sets from the Comparative Toxicogenomics Database (CTD). We tested for significant differential expression (SDE) (false discovery rate -corrected p-values < 0.05) of the next-gen TM-derived gene sets and the CTD-derived gene sets in gene expression (GE) data sets of five chemicals (from experimental models). We tested for SDE of gene sets for six fibrates in a peroxisome proliferator-activated receptor alpha (PPARA) knock-out GE dataset and compared to results from the Connectivity Map. We tested for SDE of 319 next-gen TM-derived gene sets for environmental toxicants in three GE data sets of triazoles, and tested for SDE of 442 gene sets associated with embryonic structures. We compared the gene sets to triazole effects seen in the Whole Embryo Culture (WEC), and used principal component analysis (PCA) to discriminate triazoles from other chemicals.ResultsNext-gen TM-derived gene sets matching the chemical treatment were significantly altered in three GE data sets, and the corresponding CTD-derived gene sets were significantly altered in five GE data sets. Six next-gen TM-derived and four CTD-derived fibrate gene sets were significantly altered in the PPARA knock-out GE dataset. None of the fibrate signatures in cMap scored significant against the PPARA GE signature. 33 environmental toxicant gene sets were significantly altered in the triazole GE data sets. 21 of these toxicants had a similar toxicity pattern as the triazoles. We confirmed embryotoxic effects, and discriminated triazoles from other chemicals.ConclusionsGene set analysis with next-gen TM-derived chemical response-specific gene sets is a scalable method for identifying similarities in gene responses to other chemicals, from which one may infer potential mode of action and/or toxic effect.
Food and Chemical Toxicology | 2008
Rob Stierum; Ana Conesa; Wilbert H. M. Heijne; Ben van Ommen; Karin Junker; Mary P. Scott; R.J. Price; Clive Meredith; Brian G. Lake; John P. Groten
Transcriptomics was performed to gain insight into mechanisms of food additives butylated hydroxytoluene (BHT), curcumin (CC), propyl gallate (PG), and thiabendazole (TB), additives for which interactions in the liver can not be excluded. Additives were administered in diets for 28 days to Sprague-Dawley rats and cDNA microarray experiments were performed on hepatic RNA. BHT induced changes in the expression of 10 genes, including phase I (CYP2B1/2; CYP3A9; CYP2C6) and phase II metabolism (GST mu2). The CYP2B1/2 and GST expression findings were confirmed by real time RT-PCR, western blotting, and increased GST activity towards DCNB. CC altered the expression of 12 genes. Three out of these were related to peroxisomes (phytanoyl-CoA dioxygenase, enoyl-CoA hydratase; CYP4A3). Increased cyanide insensitive palmitoyl-CoA oxidation was observed, suggesting that CC is a weak peroxisome proliferator. TB changed the expression of 12 genes, including CYP1A2. In line, CYP1A2 protein expression was increased. The expression level of five genes, associated with p53 was found to change upon TB treatment, including p53 itself, GADD45alpha, DN-7, protein kinase C beta and serum albumin. These array experiments led to the novel finding that TB is capable of inducing p53 at the protein level, at least at the highest dose levels employed above the current NOAEL. The expression of eight genes changed upon PG administration. This study shows the value of gene expression profiling in food toxicology in terms of generating novel hypotheses on the mechanisms of action of food additives in relation to pathology.
Cancer Biomarkers | 2005
Wilbert H. M. Heijne; Rob Stierum; Winfried R. Leeman; Ben van Ommen
Hepatotoxicity is a term used for many and distinct adverse effects that may occur in the liver after exposure to toxic substances. This article reviews the current methods and markers to assess hepatotoxicity, and discusses the introduction of new ‘functional genomics’ technologies in toxicology (toxicogenomics). Applications of toxicogenomics may facilitate the development of potential new markers of (hepato) toxicity.