Robbert G. van der Most
GlaxoSmithKline
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robbert G. van der Most.
Journal of Virology | 2003
E. John Wherry; Joseph N. Blattman; Kaja Murali-Krishna; Robbert G. van der Most; Rafi Ahmed
ABSTRACT Chronic viral infections often result in ineffective CD8 T-cell responses due to functional exhaustion or physical deletion of virus-specific T cells. However, how persisting virus impacts various CD8 T-cell effector functions and influences other aspects of CD8 T-cell dynamics, such as immunodominance and tissue distribution, remains largely unknown. Using different strains of lymphocytic choriomeningitis virus (LCMV), we compared responses to the same CD8 T-cell epitopes during acute or chronic infection. Persistent infection led to a disruption of the normal immunodominance hierarchy of CD8 T-cell responses seen following acute infection and dramatically altered the tissue distribution of LCMV-specific CD8 T cells in lymphoid and nonlymphoid tissues. Most importantly, CD8 T-cell functional impairment occurred in a hierarchical fashion in chronically infected mice. Production of interleukin 2 and the ability to lyse target cells in vitro were the first functions compromised, followed by the ability to make tumor necrosis factor alpha, while gamma interferon production was most resistant to functional exhaustion. Antigen appeared to be the driving force for this loss of function, since a strong correlation existed between the viral load and the level of exhaustion. Further, epitopes presented at higher levels in vivo resulted in physical deletion, while those presented at lower levels induced functional exhaustion. A model is proposed in which antigen levels drive the hierarchical loss of different CD8 T-cell effector functions during chronic infection, leading to distinct stages of functional impairment and eventually to physical deletion of virus-specific T cells. These results have implications for the study of human chronic infections, where similar T-cell deletion and functional dysregulation has been observed.
Immunity | 2008
Joseph D. Miller; Robbert G. van der Most; Rama Akondy; John Glidewell; Sophia Albott; David Masopust; Kaja Murali-Krishna; Patryce L. Mahar; Srilatha Edupuganti; Susan Lalor; Stephanie Germon; Carlos del Rio; Mark J. Mulligan; Silvija I. Staprans; John D. Altman; Mark B. Feinberg; Rafi Ahmed
To explore the human T cell response to acute viral infection, we performed a longitudinal analysis of CD8(+) T cells responding to the live yellow fever virus and smallpox vaccines--two highly successful human vaccines. Our results show that both vaccines generated a brisk primary effector CD8(+) T cell response of substantial magnitude that could be readily quantitated with a simple set of four phenotypic markers. Secondly, the vaccine-induced T cell response was highly specific with minimal bystander effects. Thirdly, virus-specific CD8(+) T cells passed through an obligate effector phase, contracted more than 90% and gradually differentiated into long-lived memory cells. Finally, these memory cells were highly functional and underwent a memory differentiation program distinct from that described for human CD8(+) T cells specific for persistent viruses. These results provide a benchmark for CD8(+) T cell responses induced by two of the most effective vaccines ever developed.
Journal of Virology | 2002
Laurie E. Harrington; Robbert G. van der Most; J. Lindsay Whitton; Rafi Ahmed
ABSTRACT Recombinant vaccinia viruses (rVV) have been extensively used as vaccines, but there is little information about the total magnitude of the VV-specific T-cell response and how this compares to the immune response to the foreign gene(s) expressed by the rVV. To address this issue, we quantitated the T-cell responses to both the viral vector and the insert following the infection of mice with VV expressing a cytotoxic T lymphocyte (CTL) epitope (NP118-126) from lymphocytic choriomeningitis virus (LCMV). The LCMV epitope-specific response was quantitated by intracellular cytokine staining after stimulation with the specific peptide. To analyze the total VV-specific response, we developed a simple intracellular cytokine staining assay using VV-infected major histocompatibility complex class I and II matched cells as stimulators. Using this approach, we made the following determinations. (i) VV-NP118 induced potent and long-lasting CD8 and CD4 T-cell responses to the vector; at the peak of the response (∼1 week), there were ∼107 VV-specific CD8 T cells (25% of the CD8 T cells) and ∼106 VV-specific CD4 T cells (∼5% of the CD4 T cells) in the spleen. These numbers decreased to ∼5 × 105 CD8 T cells (∼5% frequency) and ∼105 CD4 T cells (∼0.5% frequency), respectively, by day 30 and were then stably maintained at these levels for >300 days. The size of this VV-specific T-cell response was comparable to that of the T-cell response induced following an acute LCMV infection. (ii) VV-specific CD8 and CD4 T cells were capable of producing gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and interleukin-2; all cells were able to make IFN-γ, a subset produced both IFN-γ and TNF-α, and another subset produced all three cytokines. (iii) The CD8 T-cell response to the foreign gene (LCMV NP118-126 epitope) was coordinately regulated with the response to the vector during all three phases (expansion, contraction, and memory) of the T-cell response. The total number of CD8 T cells responding to NP118-126 were ∼20- to 30-fold lower than the number responding to the VV vector (∼1% at the peak and 0.2% in memory). This study provides a better understanding of T-cell immunity induced by VV-based vaccines, and in addition, the technique described in the study can be readily extended to other viral vectors to determine the ratio of the T-cell response to the insert versus the vector. This information will be useful in optimizing prime-boost regimens for vaccination.
Journal of Experimental Medicine | 2010
Daniel M. Andrews; Marie J. Estcourt; Christopher E. Andoniou; Matthew E. Wikstrom; Andrea Khong; Valentina Voigt; Peter Fleming; Hyacinth Tabarias; Geoffrey R. Hill; Robbert G. van der Most; Anthony A. Scalzo; Mark J. Smyth; Mariapia A. Degli-Esposti
Effective immunity requires the coordinated activation of innate and adaptive immune responses. Natural killer (NK) cells are central innate immune effectors, but can also affect the generation of acquired immune responses to viruses and malignancies. How NK cells influence the efficacy of adaptive immunity, however, is poorly understood. Here, we show that NK cells negatively regulate the duration and effectiveness of virus-specific CD4+ and CD8+ T cell responses by limiting exposure of T cells to infected antigen-presenting cells. This impacts the quality of T cell responses and the ability to limit viral persistence. Our studies provide unexpected insights into novel interplays between innate and adaptive immune effectors, and define the critical requirements for efficient control of viral persistence.
Vaccine | 2010
Isabel Leroux-Roels; François Roman; Sheron Forgus; Cathy Maes; Fien De Boever; Mamadou Dramé; Paul Gillard; Robbert G. van der Most; Marcelle Van Mechelen; Emmanuel Hanon; Geert Leroux-Roels
An influenza vaccine with cross-immunogenic potential could play a key role in pandemic mitigation by promoting a rapid immune response to infection and/or subsequent vaccination with strains drifted from the primary vaccine strain. Here we assess the role of AS03(A) (an oil-in-water emulsion based Adjuvant System containing tocopherol) in this prime-boost concept using H5N1 as a model shift influenza antigen. In this open, non-randomised study (NCT00506350; an extension of an earlier randomised study) we assessed immunogenicity in nine groups of 35-50 volunteers aged 19-61 years following administration of AS03(A)-adjuvanted split-virion H5N1 vaccine containing 3.75mug of haemagglutinin (HA) from the A/Indonesia/5/2005(IBCDC-RG2) clade 2.1 strain. A single booster dose of vaccine was administered to four groups primed 14 months previously with different HA levels of AS03(A)-adjuvanted clade 1 A/Vietnam/1194/2004 H5N1 vaccine. Two booster doses (given 21 days apart) were administered to four groups primed 14 months previously with different HA levels of non-adjuvanted A/Vietnam/1194/2004 H5N1 vaccine and also to a control group of un-primed subjects. In individuals primed 14 months earlier with AS03(A)-adjuvanted A/Vietnam/1194/2004 vaccines, a single booster dose of AS03(A)-adjuvanted A/Indonesia/5/2005 induced rapid immune responses (licensure criteria met in 7-14 days) comparable to that observed in the un-primed control group following two doses of adjuvanted vaccine. In contrast, individuals primed with non-adjuvanted formulations exhibited minimal immune responses which, even after two doses, were unexpectedly much lower than that observed in un-primed subjects. AS03(A) enhances the initial priming effect of pandemic influenza vaccination enabling a rapid humoral response to single dose boosting with a heterologous strain at 14 months. In contrast, priming without adjuvant appears to inhibit the response to subsequent vaccination with a heterologous strain. These findings should guide the development of vaccines to combat the present influenza A/H1N1 pandemic.
Journal of Virology | 2000
Robbert G. van der Most; Kaja Murali-Krishna; Rafi Ahmed; James H. Strauss
ABSTRACT We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.
Journal of Virology | 2009
Joseph N. Blattman; E. John Wherry; Sang Jun Ha; Robbert G. van der Most; Rafi Ahmed
ABSTRACT During some persistent viral infections, virus-specific T-cell responses wane due to the antigen-specific deletion or functional inactivation (i.e., exhaustion) of responding CD8 T cells. T-cell exhaustion often correlates with high viral load and is associated with the expression of the inhibitory receptor PD-1. In other infections, functional T cells are observed despite high levels of pathogen persistence. The reasons for these different T-cell fates during chronic viral infections are not clear. Here, we tracked the fate of virus-specific CD8 T cells in lymphocytic choriomeningitis virus (LCMV)-infected mice during viral clearance, the persistence of wild-type virus, or the selection and persistence of a viral variant that abrogates the presentation of a single epitope. Viral clearance results in PD-1lo functional virus-specific CD8 T cells, while the persistence of wild-type LCMV results in high PD-1 levels and T-cell exhaustion. However, following the emergence of a GP35V→A variant virus that abrogates the presentation of the GP33 epitope, GP33-specific CD8 T cells remained functional, continued to show low levels of PD-1, and reexpressed CD127, a marker of memory T-cell differentiation. In the same animals and under identical environmental conditions, CD8 T cells recognizing nonmutated viral epitopes became physically deleted or were PD-1hi and nonfunctional. Thus, the upregulation of PD-1 and the functional inactivation of virus-specific T cells during chronic viral infection is dependent upon continued epitope recognition. These data suggest that optimal strategies for vaccination should induce high-magnitude broadly specific T-cell responses that prevent cytotoxic T-lymphocyte escape and highlight the need to evaluate the function of vaccine-induced T cells in the context of antigens presented during virus persistence.
Human Vaccines | 2011
Mark H. Einstein; Mira Baron; Myron J. Levin; Archana Chatterjee; Bradley Fox; Sofia Scholar; Jeffrey Rosen; Nahida Chakhtoura; Marie Lebacq; Robbert G. van der Most; Philippe Moris; Sandra L. Giannini; Anne Schuind; Sanjoy Datta; Dominique Descamps
Protection against oncogenic non-vaccine types (cross-protection) offered by human papillomavirus (HPV) vaccines may provide a significant medical benefit. Available clinical efficacy data suggest the two licensed vaccines (HPV-16/18 vaccine, GlaxoSmithKline Biologicals [GSK], and HPV-6/11/16/18 vaccine, Merck & Co., Inc.) differ in terms of protection against oncogenic non-vaccine HPV types -31/45. The immune responses induced by the two vaccines against these two non-vaccine HPV types (cross-reactivity) was compared in an observer-blind study up to Month 24 (18 months post-vaccination), in women HPV DNA-negative and seronegative prior to vaccination for the HPV type analyzed (HPV-010 [NCT00423046]). Geometric mean antibody titers (GMTs) measured by pseudovirion-based neutralization assay (PBNA) and enzyme-linked immunosorbent assay (ELISA) were similar between vaccines for HPV-31/45. Seropositivity rates for HPV-31 were also similar between vaccines; however, there was a trend for higher seropositivity with the HPV-16/18 vaccine (13.0–16.7%) versus the HPV-6/11/16/18 vaccine (0.0–5.0%) for HPV-45 with PBNA, but not ELISA. HPV-31/45 cross-reactive memory B-cell responses were comparable between vaccines. Circulating antigen-specific CD4+ T-cell frequencies were higher for the HPV-16/18 vaccine than the HPV-6/11/16/18 vaccine (HPV-31 [geometric mean ratio [GMR] =2.0; p=0.0002] and HPV-45 [GMR=2.6; p=0.0092]), as were the proportion of T-cell responders (HPV-31, p=0.0009; HPV-45, p=0.0793). In conclusion, immune response to oncogenic non-vaccine HPV types -31/45 was generally similar for both vaccines with the exception of T-cell response which was higher with the HPV-16/18 vaccine. Considering the differences in cross-protective efficacy between the two vaccines, the results might provide insights into the underlying mechanism(s) of protection.
Cancer Immunology, Immunotherapy | 2009
Robbert G. van der Most; Andrew J. Currie; Sathish Mahendran; Amy Prosser; Anna Darabi; Bruce W. S. Robinson; Anna K. Nowak; Richard A. Lake
Tumor cell death potentially engages with the immune system. However, the efficacy of anti-tumor chemotherapy may be limited by tumor-driven immunosuppression, e.g., through CD25+ regulatory T cells. We addressed this question in a mouse model of mesothelioma by depleting or reconstituting CD25+ regulatory T cells in combination with two different chemotherapeutic drugs. We found that the efficacy of cyclophosphamide to eradicate established tumors, which has been linked to regulatory T cell depletion, was negated by adoptive transfer of CD25+ regulatory T cells. Analysis of post-chemotherapy regulatory T cell populations revealed that cyclophosphamide depleted cycling (Ki-67hi) T cells, including foxp3+ regulatory CD4+ T cells. Ki-67hi CD4+ T cells expressed increased levels of two markers, TNFR2 and ICOS, that have been associated with a maximally suppressive phenotype according to recently published studies. This suggest that cyclophosphamide depletes a population of maximally suppressive regulatory T cells, which may explain its superior anti-tumor efficacy in our model. Our data suggest that regulatory T cell depletion could be used to improve the efficacy of anti-cancer chemotherapy regimens. Indeed, we observed that the drug gemcitabine, which does not deplete cycling regulatory T cells, eradicates established tumors in mice only when CD25+ CD4+ T cells are concurrently depleted. Cyclophosphamide could be used to achieve regulatory T cell depletion in combination with chemotherapy.
Journal of Virology | 2003
A.F.G. Antonis; Remco S. Schrijver; Franz Daus; Paul J. G. M. Steverink; Norbert Stockhofe; E. J. Hensen; Johannes P. M. Langedijk; Robbert G. van der Most
ABSTRACT The bovine and human respiratory syncytial viruses cause severe lower respiratory tract infections. Effective vaccines against the respiratory syncytial viruses have been lacking since vaccine failures in the 1960s and 1970s. In this report, we describe a bovine respiratory syncytial virus (bRSV) challenge model in which both classical bRSV respiratory infection and vaccine-enhanced immune pathology were reproduced. The classical, formalin-inactivated (FI) bRSV vaccine that has been associated with vaccine failure was efficient in inducing high antibody titers and reducing viral loads but also primed calves for a far more serious enhanced respiratory disease after a bRSV challenge, thereby mimicking the enhanced clinical situation in FI human RSV (hRSV)-immunized and hRSV-infected infants in the 1960s. We show that immunization with FI-bRSV mainly primes a Th2-like inflammatory response that is characterized by a significant eosinophilic influx in the bronchial alveolar lung fluid and lung tissues and high levels of immunoglobulin E serum antibodies. The current model may be useful in the evaluation of new bRSV candidate vaccines for potency and safety.