Robert A. Obar
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert A. Obar.
Cell | 2011
K. G. Guruharsha; Jean François Rual; Bo Zhai; Julian Mintseris; Pujita Vaidya; Namita Vaidya; Chapman Beekman; Christina Y. Wong; David Y. Rhee; Odise Cenaj; Emily McKillip; Saumini Shah; Mark Stapleton; Kenneth H. Wan; Charles Yu; Bayan Parsa; Joseph W. Carlson; Xiao Chen; Bhaveen Kapadia; K. VijayRaghavan; Steven P. Gygi; Susan E. Celniker; Robert A. Obar; Spyros Artavanis-Tsakonas
Determining the composition of protein complexes is an essential step toward understanding the cell as an integrated system. Using coaffinity purification coupled to mass spectrometry analysis, we examined protein associations involving nearly 5,000 individual, FLAG-HA epitope-tagged Drosophila proteins. Stringent analysis of these data, based on a statistical framework designed to define individual protein-protein interactions, led to the generation of a Drosophila protein interaction map (DPiM) encompassing 556 protein complexes. The high quality of the DPiM and its usefulness as a paradigm for metazoan proteomes are apparent from the recovery of many known complexes, significant enrichment for shared functional attributes, and validation in human cells. The DPiM defines potential novel members for several important protein complexes and assigns functional links to 586 protein-coding genes lacking previous experimental annotation. The DPiM represents, to our knowledge, the largest metazoan protein complex map and provides a valuable resource for analysis of protein complex evolution.
Cell | 2015
Edward L. Huttlin; Lily Ting; Raphael J. Bruckner; Fana Gebreab; Melanie P. Gygi; John Szpyt; Stanley Tam; Gabriela Zarraga; Greg Colby; Kurt Baltier; Rui Dong; Virginia Guarani; Laura Pontano Vaites; Alban Ordureau; Ramin Rad; Brian K. Erickson; Martin Wühr; Joel M. Chick; Bo Zhai; Deepak Kolippakkam; Julian Mintseris; Robert A. Obar; Tim Harris; Spyros Artavanis-Tsakonas; Mathew E. Sowa; Pietro De Camilli; Joao A. Paulo; J. Wade Harper; Steven P. Gygi
Protein interactions form a network whose structure drives cellular function and whose organization informs biological inquiry. Using high-throughput affinity-purification mass spectrometry, we identify interacting partners for 2,594 human proteins in HEK293T cells. The resulting network (BioPlex) contains 23,744 interactions among 7,668 proteins with 86% previously undocumented. BioPlex accurately depicts known complexes, attaining 80%-100% coverage for most CORUM complexes. The network readily subdivides into communities that correspond to complexes or clusters of functionally related proteins. More generally, network architecture reflects cellular localization, biological process, and molecular function, enabling functional characterization of thousands of proteins. Network structure also reveals associations among thousands of protein domains, suggesting a basis for examining structurally related proteins. Finally, BioPlex, in combination with other approaches, can be used to reveal interactions of biological or clinical significance. For example, mutations in the membrane protein VAPB implicated in familial amyotrophic lateral sclerosis perturb a defined community of interactors.
Nature | 2017
Edward L. Huttlin; Raphael J. Bruckner; Joao A. Paulo; Joe R. Cannon; Lily Ting; Kurt Baltier; Greg Colby; Fana Gebreab; Melanie P. Gygi; Hannah Parzen; John Szpyt; Stanley Tam; Gabriela Zarraga; Laura Pontano-Vaites; Sharan Swarup; Anne E. White; Devin K. Schweppe; Ramin Rad; Brian K. Erickson; Robert A. Obar; K. G. Guruharsha; Kejie Li; Spyros Artavanis-Tsakonas; Steven P. Gygi; J. Wade Harper
The physiology of a cell can be viewed as the product of thousands of proteins acting in concert to shape the cellular response. Coordination is achieved in part through networks of protein–protein interactions that assemble functionally related proteins into complexes, organelles, and signal transduction pathways. Understanding the architecture of the human proteome has the potential to inform cellular, structural, and evolutionary mechanisms and is critical to elucidating how genome variation contributes to disease. Here we present BioPlex 2.0 (Biophysical Interactions of ORFeome-derived complexes), which uses robust affinity purification–mass spectrometry methodology to elucidate protein interaction networks and co-complexes nucleated by more than 25% of protein-coding genes from the human genome, and constitutes, to our knowledge, the largest such network so far. With more than 56,000 candidate interactions, BioPlex 2.0 contains more than 29,000 previously unknown co-associations and provides functional insights into hundreds of poorly characterized proteins while enhancing network-based analyses of domain associations, subcellular localization, and co-complex formation. Unsupervised Markov clustering of interacting proteins identified more than 1,300 protein communities representing diverse cellular activities. Genes essential for cell fitness are enriched within 53 communities representing central cellular functions. Moreover, we identified 442 communities associated with more than 2,000 disease annotations, placing numerous candidate disease genes into a cellular framework. BioPlex 2.0 exceeds previous experimentally derived interaction networks in depth and breadth, and will be a valuable resource for exploring the biology of incompletely characterized proteins and for elucidating larger-scale patterns of proteome organization.
Journal of Cell Biology | 2009
Jessica A. Hurt; Robert A. Obar; Bo Zhai; Natalie G. Farny; Steven P. Gygi; Pamela A. Silver
Coupling of messenger RNA (mRNA) nuclear export with prior processing steps aids in the fidelity and efficiency of mRNA transport to the cytoplasm. In this study, we show that the processes of export and polyadenylation are coupled via the Drosophila melanogaster CCCH-type zinc finger protein CG6694/dZC3H3 through both physical and functional interactions. We show that depletion of dZC3H3 from S2R+ cells results in transcript hyperadenylation. Using targeted coimmunoprecipitation and liquid chromatography mass spectrometry (MS)/MS techniques, we characterize interactions of known components of the mRNA nuclear export and polyadenylation machineries with dZC3H3. Furthermore, we demonstrate the functional conservation of this factor, as depletion of its human homologue ZC3H3 by small interfering RNA results in an mRNA export defect in human cells as well. Nuclear polyadenylated (poly(A)) RNA in ZC3H3-depleted cells is sequestered in foci removed from SC35-containing speckles, indicating a shift from the normal subnuclear distribution of poly(A) RNA. Our data suggest a model wherein ZC3H3 interfaces between the polyadenylation machinery, newly poly(A) mRNAs, and factors for transcript export.
Cell Reports | 2014
David Y. Rhee; Dong-Yeon Cho; Bo Zhai; Matthew Slattery; Lijia Ma; Julian Mintseris; Christina Y. Wong; Kevin P. White; Susan E. Celniker; Teresa M. Przytycka; Steven P. Gygi; Robert A. Obar; Spyros Artavanis-Tsakonas
Specific cellular fates and functions depend on differential gene expression, which occurs primarily at the transcriptional level and is controlled by complex regulatory networks of transcription factors (TFs). TFs act through combinatorial interactions with other TFs, cofactors, and chromatin-remodeling proteins. Here, we define protein-protein interactions using a coaffinity purification/mass spectrometry method and study 459 Drosophila melanogaster transcription-related factors, representing approximately half of the established catalog of TFs. We probe this network in vivo, demonstrating functional interactions for many interacting proteins, and test the predictive value of our data set. Building on these analyses, we combine regulatory network inference models with physical interactions to define an integrated network that connects combinatorial TF protein interactions to the transcriptional regulatory network of the cell. We use this integrated network as a tool to connect the functional network of genetic modifiers related to mastermind, a transcriptional cofactor of the Notch pathway.
Development | 2013
Robert J. Fleming; Kazuya Hori; Anindya Sen; Gina V. Filloramo; Jillian M. Langer; Robert A. Obar; Spyros Artavanis-Tsakonas; Ayiti C. Maharaj-Best
Cell-to-cell communication via the Notch pathway is mediated between the membrane-bound Notch receptor and either of its canonical membrane-bound ligands Delta or Serrate. Notch ligands mediate receptor transactivation between cells and also mediate receptor cis-inhibition when Notch and ligand are co-expressed on the same cell. We demonstrate in Drosophila that removal of any of the EGF-like repeats (ELRs) 4, 5 or 6 results in a Serrate molecule capable of transactivating Notch but exhibiting little or no Notch cis-inhibition capacity. These forms of Serrate require Epsin (Liquid facets) to transduce a signal, suggesting that ELR 4-6-deficient ligands still require endocytosis for Notch activation. We also demonstrate that ELRs 4-6 are responsible for the dominant-negative effects of Serrate ligand forms that lack the intracellular domain and are therefore incapable of endocytosis in the ligand-expressing cell. We find that ELRs 4-6 of Serrate are conserved across species but do not appear to be conserved in Delta homologs.
Fly | 2012
K. G. Guruharsha; Robert A. Obar; Julian Mintseris; K. Aishwarya; R.T. Krishnan; K. VijayRaghavan; Spyros Artavanis-Tsakonas
Proteins perform essential cellular functions as part of protein complexes, often in conjunction with RNA, DNA, metabolites and other small molecules. The genome encodes thousands of proteins but not all of them are expressed in every cell type; and expressed proteins are not active at all times. Such diversity of protein expression and function accounts for the level of biological intricacy seen in nature. Defining protein-protein interactions in protein complexes, and establishing the when, what and where of potential interactions, is therefore crucial to understanding the cellular function of any protein—especially those that have not been well studied by traditional molecular genetic approaches. We generated a large-scale resource of affinity-tagged expression-ready clones and used co-affinity purification combined with tandem mass-spectrometry to identify protein partners of nearly 5,000 Drosophila melanogaster proteins. The resulting protein complex “map” provided a blueprint of metazoan protein complex organization. Here we describe how the map has provided valuable insights into protein function in addition to generating hundreds of testable hypotheses. We also discuss recent technological advancements that will be critical in addressing the next generation of questions arising from the map.
Methods of Molecular Biology | 2014
K. G. Guruharsha; Kazuya Hori; Robert A. Obar; Spyros Artavanis-Tsakonas
Recent large-scale studies have provided a global description of the interactome-the whole network of protein interactions in a cell or an organism-for several model organisms. Defining protein interactions on a proteome-wide scale has led to a better understanding of the cellular functions of many proteins, especially those that have not been studied by classical molecular genetic approaches. Here we describe the resources, methods, and techniques necessary for generation of such a proteome-scale interactome in a high throughput manner. These procedures will also be applicable to low or medium throughput focused studies aimed at understanding interactions between members of specific pathways such as Notch signaling.
Developmental Biology | 2006
Robert L. Morris; Hoffman Mp; Robert A. Obar; McCafferty Ss; Ian R. Gibbons; Leone Ad; Cool J; Allgood El; Musante Am; Judkins Km; Rossetti Bj; Rawson Ap; David R. Burgess
Genome Research | 2015
Marcus H. Stoiber; Sara Olson; Gemma May; Michael O. Duff; Jan Manent; Robert A. Obar; K. G. Guruharsha; Peter J. Bickel; Spyros Artavanis-Tsakonas; James B. Brown; Brenton R. Graveley; Susan E. Celniker