Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Baertsch is active.

Publication


Featured researches published by Robert Baertsch.


Nucleic Acids Research | 2006

The UCSC genome browser database: update 2007

Robert M. Kuhn; Donna Karolchik; Ann S. Zweig; Heather Trumbower; Daryl J. Thomas; Archana Thakkapallayil; Charles W. Sugnet; Mario Stanke; Kayla E. Smith; Adam Siepel; Kate R. Rosenbloom; Brooke Rhead; Brian J. Raney; Andrew A. Pohl; Jakob Skou Pedersen; Fan Hsu; Angie S. Hinrichs; Rachel A. Harte; Mark Diekhans; Hiram Clawson; Gill Bejerano; Galt P. Barber; Robert Baertsch; David Haussler; William Kent

The UCSC Genome Browser Database (GBD, http://genome.ucsc.edu) is a publicly available collection of genome assembly sequence data and integrated annotations for a large number of organisms, including extensive comparative-genomic resources. In the past year, 13 new genome assemblies have been added, including two important primate species, orangutan and marmoset, bringing the total to 46 assemblies for 24 different vertebrates and 39 assemblies for 22 different invertebrate animals. The GBD datasets may be viewed graphically with the UCSC Genome Browser, which uses a coordinate-based display system allowing users to juxtapose a wide variety of data. These data include all mRNAs from GenBank mapped to all organisms, RefSeq alignments, gene predictions, regulatory elements, gene expression data, repeats, SNPs and other variation data, as well as pairwise and multiple-genome alignments. A variety of other bioinformatics tools are also provided, including BLAT, the Table Browser, the Gene Sorter, the Proteome Browser, VisiGene and Genome Graphs.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes

W. James Kent; Robert Baertsch; Angie S. Hinrichs; Webb Miller; David Haussler

This study examines genomic duplications, deletions, and rearrangements that have happened at scales ranging from a single base to complete chromosomes by comparing the mouse and human genomes. From whole-genome sequence alignments, 344 large (>100-kb) blocks of conserved synteny are evident, but these are further fragmented by smaller-scale evolutionary events. Excluding transposon insertions, on average in each megabase of genomic alignment we observe two inversions, 17 duplications (five tandem or nearly tandem), seven transpositions, and 200 deletions of 100 bases or more. This includes 160 inversions and 75 duplications or transpositions of length >100 kb. The frequencies of these smaller events are not substantially higher in finished portions in the assembly. Many of the smaller transpositions are processed pseudogenes; we define a “syntenic” subset of the alignments that excludes these and other small-scale transpositions. These alignments provide evidence that ≈2% of the genes in the human/mouse common ancestor have been deleted or partially deleted in the mouse. There also appears to be slightly less nontransposon-induced genome duplication in the mouse than in the human lineage. Although some of the events we detect are possibly due to misassemblies or missing data in the current genome sequence or to the limitations of our methods, most are likely to represent genuine evolutionary events. To make these observations, we developed new alignment techniques that can handle large gaps in a robust fashion and discriminate between orthologous and paralogous alignments.


Nucleic Acids Research | 2007

The UCSC Genome Browser Database: 2008 update

Donna Karolchik; Robert M. Kuhn; Robert Baertsch; Galt P. Barber; Hiram Clawson; Mark Diekhans; Belinda Giardine; Rachel A. Harte; Angie S. Hinrichs; Fan Hsu; K. M. Kober; Webb Miller; Jakob Skou Pedersen; Andy Pohl; Brian J. Raney; Brooke Rhead; Kate R. Rosenbloom; Kayla E. Smith; Mario Stanke; Archana Thakkapallayil; Heather Trumbower; Ting Wang; Ann S. Zweig; David Haussler; William Kent

The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this year’s additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.edu/. INTRODUCTION Fundamental to expanding our knowledge of how the human body works in health and in disease is the capability to access and share data produced through experimentation and computational analysis. The University of California, Santa Cruz (UCSC) Genome Browser Database (GBD) (http://genome.ucsc.edu) (1) provides a common repository for genomic annotation data—including comparative genomics, genes and gene predictions; mRNA and EST alignments; and expression, regulation, variation and assembly data—and robust, flexible tools for viewing, comparing, distributing and analyzing the information. Produced and maintained by the Genome Bioinformatics Group at the UCSC Center for Biomolecular Science and Engineering, the GBD focuses primarily on vertebrate and model organism genomes, with an emphasis on comparative genomics analysis. As of September 2007 the GBD contains data for 11 mammalian species including human, mouse, rat, chimpanzee, rhesus macaque, horse, cow, cat, dog, opossum and platypus; 8 other vertebrates: chicken, lizard (Anolis carolinensis), frog (Xenopus tropicalis), zebrafish, fugu, tetraodon, medaka and stickleback; and 21 invertebrates including 11 flies, honeybee, Anopheles mosquito, five worms, one yeast (Saccharomyces cerevisiae) and two deuterostomes—purple sea urchin and sea squirt. For many of the organisms, more than one assembly is provided, and several older archived assemblies may be *To whom correspondence should be addressed. Tel: +1 831 459 1544; Fax: +1 831 459 1809; Email: [email protected] University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this years additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.edu/.


Bioinformatics | 2008

Using native and syntenically mapped cDNA alignments to improve de novo gene finding

Mario Stanke; Mark Diekhans; Robert Baertsch; David Haussler

MOTIVATION Computational annotation of protein coding genes in genomic DNA is a widely used and essential tool for analyzing newly sequenced genomes. However, current methods suffer from inaccuracy and do poorly with certain types of genes. Including additional sources of evidence of the existence and structure of genes can improve the quality of gene predictions. For many eukaryotic genomes, expressed sequence tags (ESTs) are available as evidence for genes. Related genomes that have been sequenced, annotated, and aligned to the target genome provide evidence of existence and structure of genes. RESULTS We incorporate several different evidence sources into the gene finder AUGUSTUS. The sources of evidence are gene and transcript annotations from related species syntenically mapped to the target genome using TransMap, evolutionary conservation of DNA, mRNA and ESTs of the target species, and retroposed genes. The predictions include alternative splice variants where evidence supports it. Using only ESTs we were able to correctly predict at least one splice form exactly correct in 57% of human genes. Also using evidence from other species and human mRNAs, this number rises to 77%. Syntenic mapping is well-suited to annotate genomes closely related to genomes that are already annotated or for which extensive transcript evidence is available. Native cDNA evidence is most helpful when the alignments are used as compound information rather than independent positionwise information. AVAILABILITY AUGUSTUS is open source and available at http://augustus.gobics.de. The gene predictions for human can be browsed and downloaded at the UCSC Genome Browser (http://genome.ucsc.edu).


Genome Research | 2009

The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes

Kim D. Pruitt; Jennifer Harrow; Rachel A. Harte; Craig Wallin; Mark Diekhans; Donna Maglott; Steve Searle; Catherine M. Farrell; Jane Loveland; Barbara J. Ruef; Elizabeth Hart; Marie-Marthe Suner; Melissa J. Landrum; Bronwen Aken; Sarah Ayling; Robert Baertsch; Julio Fernandez-Banet; Joshua L. Cherry; Val Curwen; Michael DiCuccio; Manolis Kellis; Jennifer M. Lee; Michael F. Lin; Michael Schuster; Andrew Shkeda; Clara Amid; Garth Brown; Oksana Dukhanina; Adam Frankish; Jennifer Hart

Effective use of the human and mouse genomes requires reliable identification of genes and their products. Although multiple public resources provide annotation, different methods are used that can result in similar but not identical representation of genes, transcripts, and proteins. The collaborative consensus coding sequence (CCDS) project tracks identical protein annotations on the reference mouse and human genomes with a stable identifier (CCDS ID), and ensures that they are consistently represented on the NCBI, Ensembl, and UCSC Genome Browsers. Importantly, the project coordinates on manually reviewing inconsistent protein annotations between sites, as well as annotations for which new evidence suggests a revision is needed, to progressively converge on a complete protein-coding set for the human and mouse reference genomes, while maintaining a high standard of reliability and biological accuracy. To date, the project has identified 20,159 human and 17,707 mouse consensus coding regions from 17,052 human and 16,893 mouse genes. Three evaluation methods indicate that the entries in the CCDS set are highly likely to represent real proteins, more so than annotations from contributing groups not included in CCDS. The CCDS database thus centralizes the function of identifying well-supported, identically-annotated, protein-coding regions.


Nucleic Acids Research | 2006

The UCSC Archaeal Genome Browser

Kevin L. Schneider; Katherine S. Pollard; Robert Baertsch; Andy Pohl; Todd M. Lowe

As more archaeal genomes are sequenced, effective research and analysis tools are needed to integrate the diverse information available for any given locus. The feature-rich UCSC Genome Browser, created originally to annotate the human genome, can be applied to any sequenced organism. We have created a UCSC Archaeal Genome Browser, available at , currently with 26 archaeal genomes. It displays G/C content, gene and operon annotation from multiple sources, sequence motifs (promoters and Shine-Dalgarno), microarray data, multi-genome alignments and protein conservation across phylogenetic and habitat categories. We encourage submission of new experimental and bioinformatic analysis from contributors. The purpose of this tool is to aid biological discovery and facilitate greater collaboration within the archaeal research community.


Nucleic Acids Research | 2014

Current status and new features of the Consensus Coding Sequence database

Catherine M. Farrell; Nuala A. O’Leary; Rachel A. Harte; Jane Loveland; Laurens Wilming; Craig Wallin; Mark Diekhans; Daniel Barrell; Stephen M. J. Searle; Bronwen Aken; Susan M. Hiatt; Adam Frankish; Marie-Marthe Suner; Bhanu Rajput; Charles A. Steward; Garth Brown; Ruth Bennett; Michael R. Murphy; Wendy Wu; Mike Kay; Jennifer Hart; Jeena Rajan; Janet Weber; Catherine Snow; Lillian D. Riddick; Toby Hunt; David Webb; Mark G. Thomas; Pamela Tamez; Sanjida H. Rangwala

The Consensus Coding Sequence (CCDS) project (http://www.ncbi.nlm.nih.gov/CCDS/) is a collaborative effort to maintain a dataset of protein-coding regions that are identically annotated on the human and mouse reference genome assemblies by the National Center for Biotechnology Information (NCBI) and Ensembl genome annotation pipelines. Identical annotations that pass quality assurance tests are tracked with a stable identifier (CCDS ID). Members of the collaboration, who are from NCBI, the Wellcome Trust Sanger Institute and the University of California Santa Cruz, provide coordinated and continuous review of the dataset to ensure high-quality CCDS representations. We describe here the current status and recent growth in the CCDS dataset, as well as recent changes to the CCDS web and FTP sites. These changes include more explicit reporting about the NCBI and Ensembl annotation releases being compared, new search and display options, the addition of biologically descriptive information and our approach to representing genes for which support evidence is incomplete. We also present a summary of recent and future curation targets.


BMC Genomics | 2008

Retrocopy contributions to the evolution of the human genome

Robert Baertsch; Mark Diekhans; W. James Kent; David Haussler; Jürgen Brosius

BackgroundEvolution via point mutations is a relatively slow process and is unlikely to completely explain the differences between primates and other mammals. By contrast, 45% of the human genome is composed of retroposed elements, many of which were inserted in the primate lineage. A subset of retroposed mRNAs (retrocopies) shows strong evidence of expression in primates, often yielding functional retrogenes.ResultsTo identify and analyze the relatively recently evolved retrogenes, we carried out BLASTZ alignments of all human mRNAs against the human genome and scored a set of features indicative of retroposition. Of over 12,000 putative retrocopy-derived genes that arose mainly in the primate lineage, 726 with strong evidence of transcript expression were examined in detail. These mRNA retroposition events fall into three categories: I) 34 retrocopies and antisense retrocopies that added potential protein coding space and UTRs to existing genes; II) 682 complete retrocopy duplications inserted into new loci; and III) an unexpected set of 13 retrocopies that contributed out-of-frame, or antisense sequences in combination with other types of transposed elements (SINEs, LINEs, LTRs), even unannotated sequence to form potentially novel genes with no homologs outside primates. In addition to their presence in human, several of the gene candidates also had potentially viable ORFs in chimpanzee, orangutan, and rhesus macaque, underscoring their potential of function.ConclusionmRNA-derived retrocopies provide raw material for the evolution of genes in a wide variety of ways, duplicating and amending the protein coding region of existing genes as well as generating the potential for new protein coding space, or non-protein coding RNAs, by unexpected contributions out of frame, in reverse orientation, or from previously non-protein coding sequence.


Cancer Cell | 2016

N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells

John K. Lee; John W. Phillips; Bryan A. Smith; Jung Wook Park; Tanya Stoyanova; Erin F. McCaffrey; Robert Baertsch; Artem Sokolov; Justin G. Meyerowitz; Colleen Mathis; Donghui Cheng; Joshua M. Stuart; Kevan M. Shokat; W. Clay Gustafson; Jiaoti Huang; Owen N. Witte

MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention.


Proceedings of the National Academy of Sciences of the United States of America | 2015

A basal stem cell signature identifies aggressive prostate cancer phenotypes

Bryan A. Smith; Artem Sokolov; Vladislav Uzunangelov; Robert Baertsch; Yulia Newton; Kiley Graim; Colleen Mathis; Donghui Cheng; Joshua M. Stuart; Owen N. Witte

Significance Aggressive cancers often possess functional and molecular traits characteristic of normal stem cells. It is unclear if aggressive phenotypes of prostate cancer molecularly resemble normal stem cells residing within the human prostate. Here, we transcriptionally profiled epithelial populations from the human prostate and show that aggressive prostate cancer is enriched for a prostate basal stem cell signature. Within prostate cancer metastases, histological subtypes had varying enrichment of the stem cell signature, with small cell neuroendocrine carcinoma being the most stem cell-like. We further found that small cell neuroendocrine carcinoma and the prostate basal stem cell share a common transcriptional program. Targeting normal stem cell transcriptional programs may provide a new strategy for treating advanced prostate cancer. Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells.

Collaboration


Dive into the Robert Baertsch's collaboration.

Top Co-Authors

Avatar

David Haussler

University of California

View shared research outputs
Top Co-Authors

Avatar

Josh Stuart

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric J. Small

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Diekhans

University of California

View shared research outputs
Top Co-Authors

Avatar

Artem Sokolov

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiram Clawson

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge