Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Beaty is active.

Publication


Featured researches published by Robert Beaty.


Gut | 2008

Hedgehog inhibition prolongs survival in a genetically engineered mouse model of pancreatic cancer

Georg Feldmann; Nils Habbe; Surajit Dhara; Savita Bisht; Hector Alvarez; Volker Fendrich; Robert Beaty; Michael Mullendore; Collins Karikari; Nabeel Bardeesy; M. M. Ouellette; W. Yu; Anirban Maitra

Background and aims: Pancreatic cancer is among the most dismal of human malignancies. Current therapeutic strategies are virtually ineffective in controlling advanced, metastatic disease. Recent evidence suggests that the Hedgehog signalling pathway is aberrantly reactivated in the majority of pancreatic cancers, and that Hedgehog blockade has the potential to prevent disease progression and metastatic spread. Methods: Here it is shown that the Hedgehog pathway is activated in the Pdx1-Cre;LsL-KrasG12D;Ink4a/Arflox/lox transgenic mouse model of pancreatic cancer. The effect of Hedgehog pathway inhibition on survival was determined by continuous application of the small molecule cyclopamine, a smoothened antagonist. Microarray analysis was performed on non-malignant human pancreatic ductal cells overexpressing Gli1 in order to screen for downstream Hedgehog target genes likely to be involved in pancreatic cancer progression. Results: Hedgehog inhibition with cyclopamine significantly prolonged median survival in the transgenic mouse model used here (67 vs 61 days; p = 0.026). In vitro data indicated that Hedgehog activation might at least in part be ascribed to oncogenic Kras signalling. Microarray analysis identified 26 potential Hedgehog target genes that had previously been found to be overexpressed in pancreatic cancer. Five of them, BIRC3, COL11A1, NNMT, PLAU and TGM2, had been described as upregulated in more than one global gene expression analysis before. Conclusion: This study provides another line of evidence that Hedgehog signalling is a valid target for the development of novel therapeutics for pancreatic cancer that might be worth evaluating soon in a clinical setting.


Oncogene | 2010

A potential tumor suppressor role for Hic1 in breast cancer through transcriptional repression of ephrin-A1

Wei Zhang; Xiaobei Zeng; Kimberley J Briggs; Robert Beaty; Brian W. Simons; Ray-Whay Chiu Yen; M A Tyler; H-C Tsai; Ying Ye; Gregory S. Gesell; James G. Herman; Stephen B. Baylin; David Neil Watkins

The tumor suppressor gene hypermethylated in cancer 1 (HIC1), which encodes a transcriptional repressor, is epigenetically inactivated in various human cancers. In this study, we show that HIC1 is a direct transcriptional repressor of the gene encoding ephrin-A1, a cell surface ligand implicated in the pathogenesis of epithelial cancers. We also show that mouse embryos lacking both Hic1 alleles manifest developmental defects spatially associated with the misexpression of ephrin-A1, and that overexpression of ephrin-A1 is a feature of tumors arising in Hic1 heterozygous mice in which the remaining wild-type allele is epigenetically silenced. In breast cancer, we find that ephrin-A1 expression is common in vivo, but that in cell culture, expression of the EphA receptors is predominant. Restoration of HIC1 function in breast cancer cells leads to a reduction in tumor growth in vivo, an effect that can be partially rescued by co-overexpression of ephrin-A1. Interestingly, overexpression of ephrin-A1 in vitro triggers downregulation of EphA2 and EphA4 levels, resulting in an expression pattern similar to that seen in vivo. We conclude that Hic1 spatially restricts ephrin-A1 expression in development, and that upregulated expression of ephrin-A1 resulting from epigenetic silencing of HIC1 in cancer cells may be an important mechanism in epithelial malignancy.


Molecular Cancer | 2013

Cigarette smoke induces epithelial to mesenchymal transition and increases the metastatic ability of breast cancer cells

Francescopaolo Di Cello; V Lynn Flowers; Huili Li; Briana Vecchio-Pagán; Brent Gordon; Kirsten Harbom; James Shin; Robert Beaty; Wei Wang; Cory Brayton; Stephen B. Baylin; Cynthia A. Zahnow

BackgroundRecent epidemiological studies demonstrate that both active and involuntary exposure to tobacco smoke increase the risk of breast cancer. Little is known, however, about the molecular mechanisms by which continuous, long term exposure to tobacco smoke contributes to breast carcinogenesis because most previous studies have focused on short term treatment models. In this work we have set out to investigate the progressive transforming effects of tobacco smoke on non-tumorigenic mammary epithelial cells and breast cancer cells using in vitro and in vivo models of chronic cigarette smoke exposure.ResultsWe show that both non-tumorigenic (MCF 10A, MCF-12A) and tumorigenic (MCF7) breast epithelial cells exposed to cigarette smoke acquire mesenchymal properties such as fibroblastoid morphology, increased anchorage-independent growth, and increased motility and invasiveness. Moreover, transplantation experiments in mice demonstrate that treatment with cigarette smoke extract renders MCF 10A cells more capable to survive and colonize the mammary ducts and MCF7 cells more prone to metastasize from a subcutaneous injection site, independent of cigarette smoke effects on the host and stromal environment. The extent of transformation and the resulting phenotype thus appear to be associated with the differentiation state of the cells at the time of exposure. Analysis by flow cytometry showed that treatment with CSE leads to the emergence of a CD44hi/CD24low population in MCF 10A cells and of CD44+ and CD49f + MCF7 cells, indicating that cigarette smoke causes the emergence of cell populations bearing markers of self-renewing stem-like cells. The phenotypical alterations induced by cigarette smoke are accompanied by numerous changes in gene expression that are associated with epithelial to mesenchymal transition and tumorigenesis.ConclusionsOur results indicate that exposure to cigarette smoke leads to a more aggressive and transformed phenotype in human mammary epithelial cells and that the differentiation state of the cell at the time of exposure may be an important determinant in the phenotype of the final transformed state.


Journal of Neuro-oncology | 2007

PLXDC1 (TEM7) is identified in a genome-wide expression screen of glioblastoma endothelium

Robert Beaty; Jennifer Edwards; Kathy Boon; I-Mei Siu; James E. Conway; Gregory J. Riggins

Glioblastomas are a highly aggressive brain tumor, with one of the highest rates of new blood vessel formation. In this study we used a combined experimental and bioinformatics strategy to determine which genes were highly expressed and specific for glioblastoma endothelial cells (GBM-ECs), compared to gene expression in normal tissue and endothelium. Starting from fresh glioblastomas, several rounds of negative and positive selection were used to isolate GBM-ECs and extract total RNA. Using Serial Analysis of Gene Expression (SAGE), 116,259 transcript tags (35,833 unique tags) were sequenced. From this expression analysis, we found 87 tags that were not expressed in normal brain. Further subtraction of normal endothelium, bone marrow, white blood cell and other normal tissue transcripts resulted in just three gene transcripts, ANAPC10, PLXDC1(TEM7), and CYP27B1, that are highly specific to GBM-ECs. Immunohistochemistry with an antibody for PLXDC1 showed protein expression in GBM microvasculature, but not in the normal brain endothelium tested. Our results suggest that this study succeeded in identifying GBM-EC specific genes. The entire gene expression profile for the GBM-ECs and other tissues used in this study are available at SAGE Genie (http://cgap.nci.nih.gov/SAGE). Functionally, the protein products of the three tags most specific to GBM-ECs have been implicated in processes critical to endothelial cell proliferation and differentiation, and are potential targets for anti-angiogenesis based therapy.


Clinical Cancer Research | 2008

Serial Analysis of Gene Expression Identifies Connective Tissue Growth Factor Expression as a Prognostic Biomarker in Gallbladder Cancer

Hector Alvarez; Alejandro Corvalan; Juan Carlos Roa; Pedram Argani; Francisco Martinez Murillo; Jennifer B Edwards; Robert Beaty; Georg Feldmann; Seung-Mo Hong; Michael Mullendore; Iván Roa; Luis Ibáñez; Fernando Pimentel; Alfonso Diaz; Gregory J. Riggins; Anirban Maitra

Background: Gallbladder cancer (GBC) is an uncommon neoplasm in the United States, but one with high mortality rates. This malignancy remains largely understudied at the molecular level such that few targeted therapies or predictive biomarkers exist. Experimental Design: We built the first series of serial analysis of gene expression (SAGE) libraries from GBC and nonneoplastic gallbladder mucosa, composed of 21-bp long-SAGE tags. SAGE libraries were generated from three stage-matched GBC patients (representing Hispanic/Latino, Native American, and Caucasian ethnicities, respectively) and one histologically alithiasic gallbladder. Real-time quantitative PCR was done on microdissected epithelium from five matched GBC and corresponding nonneoplastic gallbladder mucosa. Immunohistochemical analysis was done on a panel of 182 archival GBC in high-throughput tissue microarray format. Results: SAGE tags corresponding to connective tissue growth factor (CTGF) transcripts were identified as differentially overexpressed in all pairwise comparisons of GBC (P < 0.001). Real-time quantitative PCR confirmed significant overexpression of CTGF transcripts in microdissected primary GBC (P < 0.05), but not in metastatic GBC, compared with nonneoplastic gallbladder epithelium. By immunohistochemistry, 66 of 182 (36%) GBC had high CTGF antigen labeling, which was significantly associated with better survival on univariate analysis (P = 0.0069, log-rank test). Conclusions: An unbiased analysis of the GBC transcriptome by SAGE has identified CTGF expression as a predictive biomarker of favorable prognosis in this malignancy. The SAGE libraries from GBC and nonneoplastic gallbladder mucosa are publicly available at the Cancer Genome Anatomy Project web site and should facilitate much needed research into this lethal neoplasm.


Cancer Research | 2007

Molecular Profiling of Matched Samples Identifies Biomarkers of Papillary Thyroid Carcinoma Lymph Node Metastasis

Janete M. Cerutti; Gisele Oler; Pedro Michaluart; Rosana Delcelo; Robert Beaty; Jennifer Shoemaker; Gregory J. Riggins

Biomarkers of papillary thyroid carcinoma (PTC) metastasis can accurately identify metastatic cells and aggressive tumor behavior. To find new markers, serial analysis of gene expression (SAGE) was done on three samples from the same patient: normal thyroid tissue, primary PTC, and a PTC lymph node metastasis. This genomewide expression analysis identified 31 genes expressed in lymph node metastasis, but not in the primary tumor. Eleven genes were evaluated by quantitative real-time reverse transcription-PCR (qPCR) on independent sets of matched samples to find genes that were consistently different between the tumor and metastatic samples. LIMD2 and PTPRC (CD45) showed a statistically significant difference in expression between tumor and metastatic samples (P < 0.0045), and an additional gene (LTB) had borderline significance. PTPRC and LTB were tested by immunohistochemistry in an independent set of paired samples, with both markers showing a difference in protein expression. All 20 metastases from 6 patients showed expression in both markers, with little or no expression in primary tumor. Some of these markers could provide an improved means to detect metastatic PTC cells during initial staging of a newly diagnosed carcinoma and/or to rule out recurrence. The functional role of these genes may also provide insight into mechanisms of thyroid cancer metastasis.


Clinical Cancer Research | 2013

Personalized Chemotherapy Profiling Using Cancer Cell Lines from Selectable Mice

Hirohiko Kamiyama; Sherri Rauenzahn; Joong Sup Shim; Collins Karikari; Georg Feldmann; Li Hua; Mihoko Kamiyama; F. William Schuler; Ming Tseh Lin; Robert Beaty; Balasubramanyam Karanam; Hong Liang; Michael Mullendore; Guanglan Mo; Manuel Hidalgo; Elizabeth M. Jaffee; Ralph H. Hruban; H. A. Jinnah; Richard Roden; Antonio Jimeno; Jun O. Liu; Anirban Maitra; James R. Eshleman

Purpose: High-throughput chemosensitivity testing of low-passage cancer cell lines can be used to prioritize agents for personalized chemotherapy. However, generating cell lines from primary cancers is difficult because contaminating stromal cells overgrow the malignant cells. Experimental Design: We produced a series of hypoxanthine phosphoribosyl transferase (hprt)-null immunodeficient mice. During growth of human cancers in these mice, hprt-null murine stromal cells replace their human counterparts. Results: Pancreatic and ovarian cancers explanted from these mice were grown in selection media to produce pure human cancer cell lines. We screened one cell line with a 3,131-drug panel and identified 77 U.S. Food and Drug Administration (FDA)–approved drugs with activity, and two novel drugs to which the cell line was uniquely sensitive. Xenografts of this carcinoma were selectively responsive to both drugs. Conclusion: Chemotherapy can be personalized using patient-specific cell lines derived in biochemically selectable mice. Clin Cancer Res; 19(5); 1139–46. ©2012 AACR.


Cancer Research | 2014

A recombinant reporter system for monitoring reactivation of an endogenously DNA hypermethylated gene

Ying Cui; Frederick H. Hausheer; Robert Beaty; Cynthia A. Zahnow; Jean-Pierre Issa; Frederick Bunz; Stephen B. Baylin

Reversing abnormal gene silencing in cancer cells due to DNA hypermethylation of promoter CpG islands may offer new cancer prevention or therapeutic approaches. Moreover, such approaches may be broadly applicable to enhance the efficacy of radiotherapy, chemotherapy, or immunotherapy. Here, we demonstrate the powerful utility of a novel gene reporter system to permit studies of the dynamics, mechanisms, and translational relevance of candidate therapies of this type in human colon cancer cells. The reporter system is based on in situ modification of the endogenous locus of the tumor-suppressor gene SFRP1, a pivotal regulator of the Wnt pathway that is silenced by DNA hypermethylation in many colon cancers. The modified SFRP1-GFP reporter allele used remained basally silent, like the unaltered allele, and it was activated only by drug treatments that derepress gene silencing by reversing DNA hypermethylation. We used the established DNA methyltransferase inhibitor (DNMTi) 5-aza-deoxycitidine (DAC) to show how this system can be used to address key questions in the clinical development of epigenetic cancer therapies. First, we defined conditions for which clinically relevant dosing could induce sustained induction of RNA and protein. Second, we found that, in vivo, a more prolonged drug exposure than anticipated was essential to derepress gene silencing in significant cell numbers, and this has implications for generating effective anticancer responses in patients with hematopoietic or solid tumors. Finally, we discovered how histone deacetylase inhibitors (HDACi) alone, when administered to cells actively replicating DNA, can robustly reexpress the silenced gene with no change in promoter methylation status. Taken together, our findings offer a new tool and insights for devising optimal clinical experiments to evaluate DNMTi and HDACi, alone or in combination, and with other cancer treatments, as agents for the epigenetic management and prevention of cancer.


Methods of Molecular Biology | 2007

Target discovery and validation in pancreatic cancer.

Robert Beaty; Mads Grønborg; Jonathan R. Pollack; Anirban Maitra

Pancreatic cancer is a lethal disease and rational strategies for early detection and targeted therapies are urgently required to alleviate the dismal prognosis of this neoplasm. The use of global RNA and protein expression-profiling technologies, such as DNA microarrays, serial analysis of gene expression, and mass spectrometric analysis of proteins, have led to identification of cellular targets with considerable potential for clinical application and patient care. These studies underscore the importance of pursuing large-scale profiling of human cancers not only for furthering our understanding of the pathogenesis of these malignancies but also for developing strategies to improve patient outcomes.


Cancer Research | 2012

Abstract 995: Transient low doses of DNA demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells

Hsing Chen Tsai; Huili Li; Leander Van Neste; Yi Cai; Carine Robert; Feyruz V. Rassool; James J. Shin; Kirsten M. Harbom; Robert Beaty; Emmanouil Pappou; James C. Harris; Ray-Whay Yen; Nita Ahuja; Malcolm V. Brock; Vered Stearns; David Feller-Kopman; Yi-Chun Lin; Alana L. Welm; Jean-Pierre Issa; Il Minn; William Matsui; Yoon-Young Jang; Saul J. Sharkis; Stephen B. Baylin; Cynthia A. Zahnow

Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL Reversal of gene promoter DNA hypermethylation and associated abnormal gene silencing is an attractive approach to cancer therapy. The DNA methylation inhibitors, decitabine (5-aza-2′-deoxycytidine) and azacitidine (5-azacytidine) are proving efficacious clinically for hematological neoplasms, especially at lower, less toxic, doses. Experimentally, high doses induce rapid DNA damage and cytotoxicity, but these may not explain the prolonged time to response often seen in patients. We now show that transient exposure of cultured and primary leukemic and epithelial tumor cells to decitabine or azacitidine at clinically-relevant nanomolar doses, without causing immediate cytotoxicity, produces a “memory” for anti-tumor responses, including potent inhibition of subpopulations of cancer, stem-like cells which often resist other therapies. These inhibitory effects are accompanied by sustained decreases in genome-wide promoter DNA methylation with associated gene re-expression, and anti-tumor changes in multiple key cellular regulatory pathways, such as cell cycle events mediated through FOXM1, cell invasion and motility, and granulocyte and breast cancer cell maturation. Notably, most of the key pathways altered by decitabine or azacitidine involve high priority targets for pharmacologic anti-cancer strategies, which provides molecular basis for possible combination therapies. Thus, low dose decitabine and azacitidine regimens may potentially have broad applicability for cancer management. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 995. doi:1538-7445.AM2012-995

Collaboration


Dive into the Robert Beaty's collaboration.

Top Co-Authors

Avatar

Anirban Maitra

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia A. Zahnow

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Gregory J. Riggins

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hector Alvarez

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William Matsui

Johns Hopkins University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge