Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Blelloch is active.

Publication


Featured researches published by Robert Blelloch.


Nature Genetics | 2007

DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal.

Yangming Wang; Rostislav Medvid; Collin Melton; Rudolf Jaenisch; Robert Blelloch

The molecular controls that govern the differentiation of embryonic stem (ES) cells remain poorly understood. DGCR8 is an RNA-binding protein that assists the RNase III enzyme Drosha in the processing of microRNAs (miRNAs), a subclass of small RNAs. Here we study the role of miRNAs in ES cell differentiation by generating a Dgcr8 knockout model. Analysis of mouse knockout ES cells shows that DGCR8 is essential for biogenesis of miRNAs. On the induction of differentiation, DGCR8-deficient ES cells do not fully downregulate pluripotency markers and retain the ability to produce ES cell colonies; however, they do express some markers of differentiation. This phenotype differs from that reported for Dicer1 knockout cells, suggesting that Dicer has miRNA-independent roles in ES cell function. Our findings indicate that miRNAs function in the silencing of ES cell self-renewal that normally occurs with the induction of differentiation.


Nature Biotechnology | 2009

Embryonic stem cell–specific microRNAs promote induced pluripotency

Robert L. Judson; Monica Venere; Robert Blelloch

This report demonstrates that introduction of microRNAs (miRNAs) specific to embryonic stem cells enhances the production of mouse induced pluripotent stem (iPS) cells. The miRNAs miR-291-3p, miR-294 and miR-295 increase the efficiency of reprogramming by Oct4, Sox2 and Klf4, but not by these factors plus cMyc. cMyc binds the promoter of the miRNAs, suggesting that they are downstream effectors of cMyc during reprogramming. However, unlike cMyc, the miRNAs induce a homogeneous population of iPS cell colonies.


Genes & Development | 2008

Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs

J. Graham Ruby; Yangming Wang; David P. Bartel; Robert Blelloch

Canonical microRNAs (miRNAs) require two processing steps: the first by the Microprocessor, a complex of DGCR8 and Drosha, and the second by a complex of TRBP and Dicer. dgcr8Delta/Delta mouse embryonic stem cells (mESCs) have less severe phenotypes than dicer1Delta/Delta mESCs, suggesting a physiological role for Microprocessor-independent, Dicer-dependent small RNAs. To identify these small RNAs with unusual biogenesis, we performed high-throughput sequencing from wild-type, dgcr8Delta/Delta, and dicer1Delta/Delta mESCs. Several of the resulting DGCR8-independent, Dicer-dependent RNAs were noncanonical miRNAs. These derived from mirtrons and a newly identified subclass of miRNA precursors, which appears to be the endogenous counterpart of shRNAs. Our analyses also revealed endogenous siRNAs resulting from Dicer cleavage of long hairpins, the vast majority of which originated from one genomic locus with tandem, inverted short interspersed nuclear elements (SINEs). Our results extend the known diversity of mammalian small RNA-generating pathways and show that mammalian siRNAs exist in cell types other than oocytes.


Nature Genetics | 2008

Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation

Yangming Wang; Scott Baskerville; Archana Shenoy; Lauren Baehner; Robert Blelloch

Dgcr8 knockout embryonic stem (ES) cells lack microprocessor activity and hence all canonical microRNAs (miRNAs). These cells proliferate slowly and accumulate in G1 phase of the cell cycle. Here, by screening a comprehensive library of individual miRNAs in the background of the Dgcr8 knockout ES cells, we report that multiple ES cell–specific miRNAs, members of the miR-290 family, rescue the ES cell proliferation defect. Furthermore, rescued cells no longer accumulate in the G1 phase of the cell cycle. These miRNAs function by suppressing several key regulators of the G1-S transition. These results show that post-transcriptional regulation by miRNAs promotes the G1-S transition of the ES cell cycle, enabling rapid proliferation of these cells. Our screening strategy provides an alternative and powerful approach for uncovering the role of individual miRNAs in biological processes, as it overcomes the common problem of redundancy and saturation in the miRNA system.


Nature Biotechnology | 2011

Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells

Deepa Subramanyam; Samy Lamouille; Robert L. Judson; Jason Liu; Nathan Bucay; Rik Derynck; Robert Blelloch

The embryonic stem cell–specific cell cycle–regulating (ESCC) family of microRNAs (miRNAs) enhances reprogramming of mouse embryonic fibroblasts to induced pluripotent stem cells. Here we show that the human ESCC miRNA orthologs hsa-miR-302b and hsa-miR-372 promote human somatic cell reprogramming. Furthermore, these miRNAs repress multiple target genes, with downregulation of individual targets only partially recapitulating the total miRNA effects. These targets regulate various cellular processes, including cell cycle, epithelial-mesenchymal transition (EMT), epigenetic regulation and vesicular transport. ESCC miRNAs have a known role in regulating the unique embryonic stem cell cycle. We show that they also increase the kinetics of mesenchymal-epithelial transition during reprogramming and block TGFβ-induced EMT of human epithelial cells. These results demonstrate that the ESCC miRNAs promote dedifferentiation by acting on multiple downstream pathways. We propose that individual miRNAs generally act through numerous pathways that synergize to regulate and enforce cell fate decisions.


Cell | 2009

Posttranscriptional Crossregulation between Drosha and DGCR8

Jinju Han; Jakob Skou Pedersen; S. Chul Kwon; Cassandra D. Belair; Young-Kook Kim; Kyu-Hyeon Yeom; Woo-Young Yang; David Haussler; Robert Blelloch; V. Narry Kim

The Drosha-DGCR8 complex, also known as Microprocessor, is essential for microRNA (miRNA) maturation. Drosha functions as the catalytic subunit, while DGCR8 (also known as Pasha) recognizes the RNA substrate. Although the action mechanism of this complex has been intensively studied, it remains unclear how Drosha and DGCR8 are regulated and if these proteins have any additional role(s) apart from miRNA processing. Here, we report that Drosha and DGCR8 regulate each other posttranscriptionally. The Drosha-DGCR8 complex cleaves the hairpin structures embedded in the DGCR8 mRNA and thereby destabilizes the mRNA. We further find that DGCR8 stabilizes the Drosha protein via protein-protein interaction. This crossregulation between Drosha and DGCR8 may contribute to the homeostatic control of miRNA biogenesis. Furthermore, microarray analyses suggest that a number of mRNAs may be downregulated in a Microprocessor-dependent, miRNA-independent manner. Our study reveals a previously unsuspected function of Microprocessor in mRNA stability control.


Current Biology | 2010

MicroRNA function is globally suppressed in mouse oocytes and early embryos.

Nayoung Suh; Lauren Baehner; Felix Moltzahn; Collin Melton; Archana Shenoy; Jing Chun Chen; Robert Blelloch

Dicer, which is required for the processing of both microRNAs (miRNAs) and small interfering RNAs (siRNAs), is essential for oocyte maturation [1, 2]. Oocytes express both miRNAs and endogenous siRNAs (endo-siRNAs) [3, 4]. To determine whether the abnormalities in Dicer knockout oocytes during meiotic maturation are secondary to the loss of endo-siRNAs and/or miRNAs, we deleted Dgcr8, which encodes an RNA-binding protein specifically required for miRNA processing. In striking contrast to Dicer, Dgcr8-deficient oocytes matured normally and, when fertilized with wild-type sperm, produced healthy-appearing offspring, even though miRNA levels were reduced to similar levels as Dicer-deficient oocytes. Furthermore, the deletion of both maternal and zygotic Dgcr8 alleles did not impair preimplantation development, including the determination of the inner cell mass and trophectoderm. Most surprisingly, the mRNA profiles of wild-type and Dgcr8 null oocytes were essentially identical, whereas Dicer null oocytes showed hundreds of misregulated transcripts. These findings show that miRNA function is globally suppressed during oocyte maturation and preimplantation development and that endo-siRNAs, rather than miRNAs, underlie the Dicer knockout phenotype in oocytes.


Circulation Research | 2009

Loss of Cardiac microRNA-Mediated Regulation Leads to Dilated Cardiomyopathy and Heart Failure

Prakash K. Rao; Yumiko Toyama; H. Rosaria Chiang; Sumeet Gupta; Michael Bauer; Rostislav Medvid; Ferenc Reinhardt; Ronglih Liao; Monty Krieger; Rudolf Jaenisch; Harvey F. Lodish; Robert Blelloch

Rationale: Heart failure is a deadly and devastating disease that places immense costs on an aging society. To develop therapies aimed at rescuing the failing heart, it is important to understand the molecular mechanisms underlying cardiomyocyte structure and function. Objective: microRNAs are important regulators of gene expression, and we sought to define the global contributions made by microRNAs toward maintaining cardiomyocyte integrity. Methods and Results: First, we performed deep sequencing analysis to catalog the miRNA population in the adult heart. Second, we genetically deleted, in cardiac myocytes, an essential component of the machinery that is required to generate miRNAs. Deep sequencing of miRNAs from the heart revealed the enrichment of a small number of microRNAs with one, miR-1, accounting for 40% of all microRNAs. Cardiomyocyte-specific deletion of dgcr8, a gene required for microRNA biogenesis, revealed a fully penetrant phenotype that begins with left ventricular malfunction progressing to a dilated cardiomyopathy and premature lethality. Conclusions: These observations reveal a critical role for microRNAs in maintaining cardiac function in mature cardiomyocytes and raise the possibility that only a handful of microRNAs may ultimately be responsible for the dramatic cardiac phenotype seen in the absence of dgcr8.


Stem Cells | 2006

Reprogramming Efficiency Following Somatic Cell Nuclear Transfer Is Influenced by the Differentiation and Methylation State of the Donor Nucleus

Robert Blelloch; Zhongde Wang; Alexander Meissner; Steven M. Pollard; Austin Smith; Rudolf Jaenisch

Reprogramming of a differentiated cell nucleus by somatic cell nuclear transplantation is an inefficient process. Following nuclear transfer, the donor nucleus often fails to express early embryonic genes and establish a normal embryonic pattern of chromatin modifications. These defects correlate with the low number of cloned embryos able to produce embryonic stem cells or develop into adult animals. Here, we show that the differentiation and methylation state of the donor cell influence the efficiency of genomic reprogramming. First, neural stem cells, when used as donors for nuclear transplantation, produce embryonic stem cells at a higher efficiency than blastocysts derived from terminally differentiated neuronal donor cells, demonstrating a correlation between the state of differentiation and cloning efficiency. Second, using a hypomorphic allele of DNA methyltransferase‐1, we found that global hypomethylation of a differentiated cell genome improved cloning efficiency. Our results provide functional evidence that the differentiation and epigenetic state of the donor nucleus influences reprogramming efficiency.


Cancer Research | 2011

Microfluidic-Based Multiplex qRT-PCR Identifies Diagnostic and Prognostic microRNA Signatures in the Sera of Prostate Cancer Patients

Felix Moltzahn; Adam B. Olshen; Lauren Baehner; Andrew S Peek; Lawrence Fong; Hubert Stöppler; Jeff Simko; Joan F. Hilton; Peter R. Carroll; Robert Blelloch

Recent prostate-specific antigen-based screening trials indicate an urgent need for novel and noninvasive biomarker identification strategies to improve the prediction of prostate cancer behavior. Noncoding microRNAs (miRNA) in the serum and plasma have been shown to have potential as noninvasive markers for physiologic and pathologic conditions. To identify serum miRNAs that diagnose and correlate with the prognosis of prostate cancer, we developed a multiplex quantitative reverse transcription PCR method involving the purification of multiplex PCR products followed by uniplex analysis on a microfluidics chip to evaluate 384 human miRNAs. Using Dgcr8 and Dicer knockout (small RNA-deficient) mouse ES cells as the benchmark, we confirmed the validity of our technique and uncovered a considerable lack of accuracy in previously published methods. Profiling 48 sera from healthy men and untreated prostate cancer patients with differing CAPRA scores, we identified miRNA signatures that allow us to diagnose cancer patients and correlate with a prognosis. These serum signatures include oncogenic and tumor-suppressive miRNAs, suggesting functional roles in prostate cancer progression.

Collaboration


Dive into the Robert Blelloch's collaboration.

Top Co-Authors

Avatar

Collin Melton

University of California

View shared research outputs
Top Co-Authors

Avatar

Archana Shenoy

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rudolf Jaenisch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Felix Moltzahn

University of California

View shared research outputs
Top Co-Authors

Avatar

Judith Kimble

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge