Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas E. Spencer is active.

Publication


Featured researches published by Thomas E. Spencer.


Amino Acids | 2009

Arginine metabolism and nutrition in growth, health and disease

Guoyao Wu; Fuller W. Bazer; Teresa A. Davis; Sung Woo Kim; Peng Li; J. Marc Rhoads; M. Carey Satterfield; Stephen B. Smith; Thomas E. Spencer; Yulong Yin

Abstractl-Arginine (Arg) is synthesised from glutamine, glutamate, and proline via the intestinal-renal axis in humans and most other mammals (including pigs, sheep and rats). Arg degradation occurs via multiple pathways that are initiated by arginase, nitric-oxide synthase, Arg:glycine amidinotransferase, and Arg decarboxylase. These pathways produce nitric oxide, polyamines, proline, glutamate, creatine, and agmatine with each having enormous biological importance. Arg is also required for the detoxification of ammonia, which is an extremely toxic substance for the central nervous system. There is compelling evidence that Arg regulates interorgan metabolism of energy substrates and the function of multiple organs. The results of both experimental and clinical studies indicate that Arg is a nutritionally essential amino acid (AA) for spermatogenesis, embryonic survival, fetal and neonatal growth, as well as maintenance of vascular tone and hemodynamics. Moreover, a growing body of evidence clearly indicates that dietary supplementation or intravenous administration of Arg is beneficial in improving reproductive, cardiovascular, pulmonary, renal, gastrointestinal, liver and immune functions, as well as facilitating wound healing, enhancing insulin sensitivity, and maintaining tissue integrity. Additionally, Arg or l-citrulline may provide novel and effective therapies for obesity, diabetes, and the metabolic syndrome. The effect of Arg in treating many developmental and health problems is unique among AAs, and offers great promise for improved health and wellbeing of humans and animals.


Biology of Reproduction | 2000

Evidence for Placental Abnormality as the Major Cause of Mortality in First-Trimester Somatic Cell Cloned Bovine Fetuses

Jonathan R. Hill; Robert C. Burghardt; Karen Jones; Charles R. Long; C.R. Looney; Taeyoung Shin; Thomas E. Spencer; James A. Thompson; Quinton A. Winger; Mark E. Westhusin

Abstract The production of cloned animals is, at present, an inefficient process. This study focused on the fetal losses that occur between Days 30–90 of gestation. Fetal and placental characteristics were studied from Days 30–90 of gestation using transrectal ultrasonography, maternal pregnancy specific protein b (PSPb) levels, and postslaughter collection of fetal tissue. Pregnancy rates at Day 30 were similar for recipient cows carrying nuclear transfer (NT) and control embryos (45% [54/120] vs. 58% [11/19]), although multiple NT embryos were often transferred into recipients. From Days 30–90, 82% of NT fetuses died, whereas all control pregnancies remained viable. Crown-rump (CR) length was less in those fetuses that were destined to die before Day 90, but no significant difference was found between the CR lengths of NT and control fetuses that survived to Day 90. Maternal PSPb levels at Days 30 and 50 of gestation were not predictive of fetal survival to Day 90. The placentas of six cloned and four control (in vivo or in vitro fertilized) bovine pregnancies were compared between Days 35 and 60 of gestation. Two cloned placentas showed rudimentary development, as indicated by flat, cuboidal trophoblastic epithelium and reduced vascularization, whereas two others possessed a reduced number of barely discernable cotyledonary areas. The remaining two cloned placentas were similar to the controls, although one contained hemorrhagic cotyledons. Poor viability of cloned fetuses during Days 35–60 was associated with either rudimentary or marginal chorioallantoic development. Our findings suggest that future research should focus on factors that promote placental and vascular growth and on fetomaternal interactions that promote placental attachment and villous formation.


Biology of Reproduction | 2001

Developmental biology of uterine glands

C. Allison Gray; Frank F. Bartol; Becky J. Tarleton; Anne A. Wiley; Greg A. Johnson; Fuller W. Bazer; Thomas E. Spencer

Abstract All mammalian uteri contain endometrial glands that synthesize or transport and secrete substances essential for survival and development of the conceptus (embryo/fetus and associated extraembryonic membranes). In rodents, uterine secretory products of the endometrial glands are unequivocally required for establishment of uterine receptivity and conceptus implantation. Analyses of the ovine uterine gland knockout model support a primary role for endometrial glands and, by default, their secretions in peri-implantation conceptus survival and development. Uterine adenogenesis is the process whereby endometrial glands develop. In humans, this process begins in the fetus, continues postnatally, and is completed during puberty. In contrast, endometrial adenogenesis is primarily a postnatal event in sheep, pigs, and rodents. Typically, endometrial adenogenesis involves differentiation and budding of glandular epithelium from luminal epithelium, followed by invagination and extensive tubular coiling and branching morphogenesis throughout the uterine stroma to the myometrium. This process requires site-specific alterations in cell proliferation and extracellular matrix (ECM) remodeling as well as paracrine cell-cell and cell-ECM interactions that support the actions of specific hormones and growth factors. Studies of uterine development in neonatal ungulates implicate prolactin, estradiol-17β, and their receptors in mechanisms regulating endometrial adenogenesis. These same hormones appear to regulate endometrial gland morphogenesis in menstruating primates and humans during reconstruction of the functionalis from the basalis endometrium after menses. In sheep and pigs, extensive endometrial gland hyperplasia and hypertrophy occur during gestation, presumably to provide increasing histotrophic support for conceptus growth and development. In the rabbit, sheep, and pig, a servomechanism is proposed to regulate endometrial gland development and differentiated function during pregnancy that involves sequential actions of ovarian steroid hormones, pregnancy recognition signals, and lactogenic hormones from the pituitary or placenta. That disruption of uterine development during critical organizational periods can alter the functional capacity and embryotrophic potential of the adult uterus reinforces the importance of understanding the developmental biology of uterine glands. Unexplained high rates of peri-implantation embryonic loss in humans and livestock may reflect defects in endometrial gland morphogenesis due to genetic errors, epigenetic influences of endocrine disruptors, and pathological lesions.


Biology of Reproduction | 2004

Progesterone and Placental Hormone Actions on the Uterus: Insights from Domestic Animals

Thomas E. Spencer; Greg A. Johnson; Robert C. Burghardt; Fuller W. Bazer

Abstract Progesterone is unequivocally required for maternal support of conceptus (embryo/fetus and associated extraembryonic membranes) survival and development. In cyclic sheep, progesterone is paradoxically involved in suppressing and then initiating development of the endometrial luteolytic mechanism. In cyclic and pregnant sheep, progesterone negatively autoregulates progesterone receptor (PR) gene expression in the endometrial luminal (LE) and superficial glandular epithelium (GE). In cyclic sheep, PR loss is closely followed by increases in epithelial estrogen receptor (ERα) and then oxytocin receptor (OTR), allowing oxytocin to induce uterine release of luteolytic prostaglandin F2α pulses. In pregnant sheep, the conceptus produces interferon tau (IFNτ) that acts on the endometrium to inhibit transcription of the ERα gene and thus development of the endometrial luteolytic mechanism. After Day 13 of pregnancy, the endometrial epithelia do not express the PR, whereas the stroma and myometrium remain PR positive. The absence of PR in the endometrial GE is required for onset of differentiated function of the glands during pregnancy. The sequential, overlapping actions of progesterone, IFNτ, placental lactogen (PL), and growth hormone (GH) comprise a hormonal servomechanism that regulates endometrial gland morphogenesis and terminal differentiated function during gestation. In pigs, estrogen, the pregnancy-recognition signal, increases fibroblast growth factor 7 (FGF-7) expression in the endometrial LE that, in turn, stimulates proliferation and differentiated functions of the trophectoderm, which expresses the receptor for FGF-7. Strategic manipulation of these physiological mechanisms may offer therapeutic schemes to improve uterine capacity, conceptus survival, and reproductive health of domestic animals and humans.


Biology of Reproduction | 2003

Osteopontin: Roles in Implantation and Placentation

Greg A. Johnson; Robert C. Burghardt; Fuller W. Bazer; Thomas E. Spencer

Abstract Osteopontin (OPN) is an acidic member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family of extracellular matrix proteins/cytokines that undergoes extensive posttranslational modification, including phosphorylation, glycosylation, and cleavage, yielding molecular mass variants ranging in size from 25 to 75 kDa. The result is a versatile protein(s) with multiple functions arising from its role as a mediator of cell-cell and cell-extracellular matrix (ECM) communication that encompass both normal and tumorigenic developmental processes, immunological responses during inflammation and wound healing, and biomineralization. Studies in primates, pigs, sheep, and rodents have revealed that OPN is a major constituent of the uterine-placental microenvironment with influence as 1) a component of histotroph required for adhesion and signal transduction at the uterine-placental interface throughout pregnancy, 2) a gene product expressed by uterine stroma contributing to a decidualization-like transformation that correlates with the degree of conceptus invasiveness, and 3) a product of resident uterine and placental immune cells that may regulate their behavior and cytokine production. This minireview summarizes information regarding uterine and placental expression of OPN that has accumulated over the past 15 yr, and we briefly describe structural/functional properties of this protein that are likely relevant to its role(s) during pregnancy. Comparative studies have offered insights into the potential hormonal/cytokine, cellular, and molecular mechanisms underlying OPN-mediated adhesion, remodeling, and cell-cell/cell-ECM communication within the uterus and placenta. OPN has the potential to profoundly impact pregnancy, and investigators are now challenged to focus on the mechanistic nature of the functions of this multifaceted and major component of the uterine-placental microenvironment.


Reproduction | 2009

COMPARATIVE ASPECTS OF IMPLANTATION

Fuller W. Bazer; Thomas E. Spencer; Greg A. Johnson; Robert C. Burghardt; Guoyao Wu

Uterine receptivity to implantation of blastocysts in mammals includes hatching from zona pellucida, precontact with uterine luminal (LE) and superficial glandular (sGE) epithelia and orientation of blastocyst, apposition between trophectoderm and uterine LE and sGE, adhesion of trophectoderm to uterine LE/sGE, and, in some species, limited or extensive invasion into the endometrial stroma and induction of decidualization of stromal cells. These peri-implantation events are prerequisites for pregnancy recognition signaling, implantation, and placentation required for fetal-placental growth and development through the remainder of pregnancy. Although there is a range of strategies for implantation in mammals, a common feature is the requirement for progesterone (P(4)) to downregulate expression of its receptors in uterine epithelia and P(4) prior to implantation events. P(4) then mediates its effects via growth factors expressed by stromal cells in most species; however, uterine luminal epithelium may express a growth factor in response to P(4) and/or estrogens in species with a true epitheliochorial placenta. There is also compelling evidence that uterine receptivity to implantation involves temporal and cell-specific expression of interferon (IFN)-stimulated genes that may be induced directly by an IFN or induced by P(4) and stimulated by an IFN. These genes have many roles including nutrient transport, cellular remodeling, angiogenesis and relaxation of vascular tissues, cell proliferation and migration, establishment of an antiviral state, and protection of conceptus tissues from challenges by the maternal immune cells.


Biology of Reproduction | 2001

Endometrial Glands Are Required for Preimplantation Conceptus Elongation and Survival

C. Allison Gray; Kristin M. Taylor; W. Shawn Ramsey; Jonathan R. Hill; Fuller W. Bazer; Frank F. Bartol; Thomas E. Spencer

Abstract Endometrial glands secrete molecules hypothesized to support conceptus growth and development. In sheep, endometrial gland morphogenesis occurs postnatally and can be epigenetically ablated by neonatal progestin exposure. The resulting stable adult uterine gland knockout (UGKO) phenotype was used here to test the hypothesis that endometrial glands are required for successful pregnancy. Mature UGKO ewes were bred repeatedly to fertile rams, but no pregnancies were detected by ultrasound on Day 25. Day 7 blastocysts from normal superovulated ewes were then transferred synchronously into Day 7 control or UGKO ewes. Ultrasonography on Days 25–65 postmating indicated that pregnancy was established in control, but not in UGKO ewes. To examine early uterine-embryo interactions, four control and eight UGKO ewes were bred to fertile rams. On Day 14, their uteri were flushed. The uterus of each control ewe contained two filamentous conceptuses of normal length. Uteri from four UGKO ewes contained no conceptus. Uteri of three UGKO ewes contained a single severely growth-retarded tubular conceptus, whereas the remaining ewe contained a single filamentous conceptus. Histological analyses of these uteri revealed that endometrial gland density was directly related to conceptus survival and developmental state. Day 14 UGKO uteri that were devoid of endometrial glands did not support normal conceptus development and contained either no conceptuses or growth-retarded tubular conceptuses. The Day 14 UGKO uterus with moderate gland development contained a filamentous conceptus. Collectively, these results demonstrate that endometrial glands and, by inference, their secretions are required for periimplantation conceptus survival and development.


Reproduction, Fertility and Development | 2007

Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses.

Thomas E. Spencer; Greg A. Johnson; Fuller W. Bazer; Robert C. Burghardt; Massimo Palmarini

The present review highlights new information on pregnancy recognition and conceptus development and implantation in sheep with respect to regulation by progesterone, interferons and endogenous retroviruses. After formation of the corpus luteum, progesterone acts on the endometrium and stimulates blastocyst growth and elongation to a filamentous conceptus (embryo/fetus and associated extra-embryonic membranes). The envelope of endogenous retroviruses related to Jaagsiekte sheep retroviruses appears to intrinsically regulate mononuclear trophectoderm cell proliferation and differentiation into trophoblast giant binucleate cells. The mononuclear trophectoderm cells of elongating sheep conceptuses secrete interferon-tau, which acts on the endometrium to prevent development of the luteolytic mechanism by inhibiting transcription of the gene for the oestrogen receptor alpha in the luminal and superficial ductal glandular epithelia. These actions prevent oestrogen-induced transcription of the oxytocin receptor gene and, therefore, oxytocin-induced luteolytic pulses of prostaglandin F2alpha. Progesterone down regulation of its receptors in luminal and glandular epithelia correlates temporally with a reduction in anti-adhesive mucin land induction of secreted galectin 15 (LGALSI5) and secreted phosphoprotein 1, which are proposed to regulate trophectoderm proliferation and adhesion. Interferon-c acts on the endometrial lumenal epithelium to induce WNT7A and to stimulate LGALS 15, cathepsin L and cystatin C, which are candidate regulators of conceptus development and implantation. The number of potential contributors to maternal recognition and establishment of pregnancy continues to grow and this highlights our limited appreciation of the complexity of the key molecules and signal transduction pathways that intersect during these key developmental processes. The goal of improving reproductive efficiency by preventing embryonic losses that occur during the peri-implantation period of pregnancy in domestic ruminants provides the challenge to increase our knowledge of endometrial function and conceptus development.


Molecular Human Reproduction | 2010

Novel pathways for implantation and establishment and maintenance of pregnancy in mammals

Fuller W. Bazer; Guoyao Wu; Thomas E. Spencer; Greg A. Johnson; Robert C. Burghardt; Kayla J. Bayless

Uterine receptivity to implantation varies among species, and involves changes in expression of genes that are coordinate with attachment of trophectoderm to uterine lumenal and superficial glandular epithelia, modification of phenotype of uterine stromal cells, silencing of receptors for progesterone and estrogen, suppression of genes for immune recognition, alterations in membrane permeability to enhance conceptus-maternal exchange of factors, angiogenesis and vasculogenesis, increased vascularity of the endometrium, activation of genes for transport of nutrients into the uterine lumen, and enhanced signaling for pregnancy recognition. Differential expression of genes by uterine epithelial and stromal cells in response to progesterone, glucocorticoids, prostaglandins and interferons may influence uterine receptivity to implantation in mammals. Uterine receptivity to implantation is progesterone-dependent; however, implantation is preceded by loss of expression of receptors for progesterone (PGR) so that progesterone most likely acts via PGR-positive stromal cells throughout pregnancy. Endogenous retroviruses expressed by the uterus and/or blastocyst also affect implantation and placentation in various species. Understanding the roles of the variety of hormones, growth factors and endogenous retroviral proteins in uterine receptivity for implantation is essential to enhancing reproductive health and fertility in humans and domestic animals.


Reproduction | 2008

Genes involved in conceptus–endometrial interactions in ruminants: insights from reductionism and thoughts on holistic approaches

Thomas E. Spencer; Olivier Sandra; Eckhard Wolf

This review summarizes new knowledge on expression of genes and provides insights into approaches for study of conceptus-endometrial interactions in ruminants with emphasis on the peri-implantation stage of pregnancy. Conceptus-endometrial interactions in ruminants are complex and involve carefully orchestrated temporal and spatial alterations in gene expression regulated by hormones from the ovary and conceptus. Progesterone is the hormone of pregnancy and acts on the uterus to stimulate blastocyst survival, growth, and development. Inadequate progesterone levels or a delayed rise in progesterone is associated with pregnancy loss. The mononuclear trophectoderm cells of the elongating blastocyst synthesize and secrete interferon-tau (IFNT), the pregnancy recognition signal. Trophoblast giant binucleate cells begin to differentiate and produce hormones including chorionic somatomammotropin 1 (CSH1 or placental lactogen). A number of genes, induced or stimulated by progesterone, IFNT, and/or CSH1 in a cell-specific manner, are implicated in trophectoderm adhesion to the endometrial luminal epithelium and regulation of conceptus growth and differentiation. Transcriptional profiling experiments are beginning to unravel the complex dynamics of conceptus-endometrial interactions in cattle and sheep. Future experiments should incorporate physiological models of pregnancy loss and be complemented by metabolomic studies of uterine lumen contents to more completely define factors required for blastocyst survival, growth, and implantation. Both reduction and holistic approaches will be important to understand the multifactorial phenomenon of recurrent pregnancy loss and provide a basis for new strategies to improve pregnancy outcome and reproductive efficiency in cattle and other domestic animals.

Collaboration


Dive into the Thomas E. Spencer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Lonergan

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kanako Hayashi

Southern Illinois University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge