Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Bjornson is active.

Publication


Featured researches published by Robert D. Bjornson.


Nature | 2012

De novo mutations revealed by whole-exome sequencing are strongly associated with autism

Stephan J. Sanders; Abha R. Gupta; John D. Murdoch; Melanie J. Raubeson; A. Jeremy Willsey; A. Gulhan Ercan-Sencicek; Nicholas M. DiLullo; Neelroop N. Parikshak; Jason L. Stein; Michael F. Walker; Gordon T. Ober; Nicole A. Teran; Youeun Song; Paul El-Fishawy; Ryan C. Murtha; Murim Choi; John D. Overton; Robert D. Bjornson; Nicholas Carriero; Kyle A. Meyer; Kaya Bilguvar; Shrikant Mane; Nenad Sestan; Richard P. Lifton; Murat Gunel; Kathryn Roeder; Daniel H. Geschwind; Bernie Devlin; Matthew W. State

Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, α subunit), a result that is highly unlikely by chance.


Nature | 2013

De novo mutations in histone-modifying genes in congenital heart disease.

Samir Zaidi; Murim Choi; Hiroko Wakimoto; Lijiang Ma; Jianming Jiang; John D. Overton; Angela Romano-Adesman; Robert D. Bjornson; Roger E. Breitbart; Kerry K. Brown; Nicholas Carriero; Yee Him Cheung; John Deanfield; Steve Depalma; Khalid A. Fakhro; Joseph T. Glessner; Hakon Hakonarson; Jonathan R. Kaltman; Juan P. Kaski; Richard Kim; Jennie Kline; Teresa Lee; Jeremy Leipzig; Alexander E. Lopez; Shrikant Mane; Laura E. Mitchell; Jane W. Newburger; Michael Parfenov; Itsik Pe'er; George A. Porter

Congenital heart disease (CHD) is the most frequent birth defect, affecting 0.8% of live births. Many cases occur sporadically and impair reproductive fitness, suggesting a role for de novo mutations. Here we compare the incidence of de novo mutations in 362 severe CHD cases and 264 controls by analysing exome sequencing of parent–offspring trios. CHD cases show a significant excess of protein-altering de novo mutations in genes expressed in the developing heart, with an odds ratio of 7.5 for damaging (premature termination, frameshift, splice site) mutations. Similar odds ratios are seen across the main classes of severe CHD. We find a marked excess of de novo mutations in genes involved in the production, removal or reading of histone 3 lysine 4 (H3K4) methylation, or ubiquitination of H2BK120, which is required for H3K4 methylation. There are also two de novo mutations in SMAD2, which regulates H3K27 methylation in the embryonic left–right organizer. The combination of both activating (H3K4 methylation) and inactivating (H3K27 methylation) chromatin marks characterizes ‘poised’ promoters and enhancers, which regulate expression of key developmental genes. These findings implicate de novo point mutations in several hundreds of genes that collectively contribute to approximately 10% of severe CHD.


Nature | 2012

Mutations in Kelch-like 3 and Cullin 3 cause hypertension and electrolyte abnormalities

Lynn M. Boyden; Murim Choi; Keith A. Choate; Carol Nelson-Williams; Anita Farhi; Hakan R. Toka; Irina Tikhonova; Robert D. Bjornson; Shrikant Mane; Giacomo Colussi; Marcel Lebel; Richard D. Gordon; Ben A. Semmekrot; Alain Poujol; Matti Välimäki; Maria Elisabetta De Ferrari; Sami A. Sanjad; Michael Gutkin; Fiona E. Karet; Joseph R. Tucci; Jim R. Stockigt; Kim M. Keppler-Noreuil; Craig C. Porter; Sudhir K. Anand; Margo Whiteford; Ira Davis; Stephanie Dewar; Alberto Bettinelli; Jeffrey J. Fadrowski; Craig W. Belsha

Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K+ and H+ excretion. Here we used exome sequencing to identify mutations in kelch-like 3 (KLHL3) or cullin 3 (CUL3) in PHAII patients from 41 unrelated families. KLHL3 mutations are either recessive or dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-domain-containing kelch proteins such as KLHL3 are components of cullin–RING E3 ligase complexes that ubiquitinate substrates bound to kelch propeller domains. Dominant KLHL3 mutations are clustered in short segments within the kelch propeller and BTB domains implicated in substrate and cullin binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na–Cl cotransporter in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3 and CUL3 mutations, increased Na–Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite the combined complexities of locus heterogeneity, mixed models of transmission and frequent de novo mutation, and establish a fundamental role for KLHL3 and CUL3 in blood pressure, K+ and pH homeostasis.


Molecular Systems Biology | 2014

AlleleSeq: analysis of allele‐specific expression and binding in a network framework

Joel Rozowsky; Alexej Abyzov; Jing Wang; Pedro Alves; Debasish Raha; Arif Harmanci; Jing Leng; Robert D. Bjornson; Yong Kong; Naoki Kitabayashi; Nitin Bhardwaj; Mark A. Rubin; Michael Snyder; Mark Gerstein

To study allele‐specific expression (ASE) and binding (ASB), that is, differences between the maternally and paternally derived alleles, we have developed a computational pipeline (AlleleSeq). Our pipeline initially constructs a diploid personal genome sequence (and corresponding personalized gene annotation) using genomic sequence variants (SNPs, indels, and structural variants), and then identifies allele‐specific events with significant differences in the number of mapped reads between maternal and paternal alleles. There are many technical challenges in the construction and alignment of reads to a personal diploid genome sequence that we address, for example, bias of reads mapping to the reference allele. We have applied AlleleSeq to variation data for NA12878 from the 1000 Genomes Project as well as matched, deeply sequenced RNA‐Seq and ChIP‐Seq data sets generated for this purpose. In addition to observing fairly widespread allele‐specific behavior within individual functional genomic data sets (including results consistent with X‐chromosome inactivation), we can study the interaction between ASE and ASB. Furthermore, we investigate the coordination between ASE and ASB from multiple transcription factors events using a regulatory network framework. Correlation analyses and network motifs show mostly coordinated ASB and ASE.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Quantifying environmental adaptation of metabolic pathways in metagenomics.

Tara A. Gianoulis; Jeroen Raes; Prianka V. Patel; Robert D. Bjornson; Jan O. Korbel; Ivica Letunic; Takuji Yamada; Alberto Paccanaro; Lars Juhl Jensen; Michael Snyder; Peer Bork; Mark Gerstein

Recently, approaches have been developed to sample the genetic content of heterogeneous environments (metagenomics). However, by what means these sequences link distinct environmental conditions with specific biological processes is not well understood. Thus, a major challenge is how the usage of particular pathways and subnetworks reflects the adaptation of microbial communities across environments and habitats—i.e., how network dynamics relates to environmental features. Previous research has treated environments as discrete, somewhat simplified classes (e.g., terrestrial vs. marine), and searched for obvious metabolic differences among them (i.e., treating the analysis as a typical classification problem). However, environmental differences result from combinations of many factors, which often vary only slightly. Therefore, we introduce an approach that employs correlation and regression to relate multiple, continuously varying factors defining an environment to the extent of particular microbial pathways present in a geographic site. Moreover, rather than looking only at individual correlations (one-to-one), we adapted canonical correlation analysis and related techniques to define an ensemble of weighted pathways that maximally covaries with a combination of environmental variables (many-to-many), which we term a metabolic footprint. Applied to available aquatic datasets, we identified footprints predictive of their environment that can potentially be used as biosensors. For example, we show a strong multivariate correlation between the energy-conversion strategies of a community and multiple environmental gradients (e.g., temperature). Moreover, we identified covariation in amino acid transport and cofactor synthesis, suggesting that limiting amounts of cofactor can (partially) explain increased import of amino acids in nutrient-limited conditions.


Nature Genetics | 2015

Genomic landscape of cutaneous T cell lymphoma.

Jaehyuk Choi; Gerald Goh; Trent Walradt; Bok Sil Hong; Christopher G. Bunick; Kan Chen; Robert D. Bjornson; Yaakov Maman; Tiffany Wang; Jesse Tordoff; Kacie R. Carlson; John D. Overton; Kristina J. Liu; Julia M. Lewis; Lesley Devine; Lisa Barbarotta; Francine M. Foss; Antonio Subtil; Eric C. Vonderheid; Richard L. Edelson; David G. Schatz; Titus J. Boggon; Michael Girardi; Richard P. Lifton

Cutaneous T cell lymphoma (CTCL) is a non-Hodgkin lymphoma of skin-homing T lymphocytes. We performed exome and whole-genome DNA sequencing and RNA sequencing on purified CTCL and matched normal cells. The results implicate mutations in 17 genes in CTCL pathogenesis, including genes involved in T cell activation and apoptosis, NF-κB signaling, chromatin remodeling and DNA damage response. CTCL is distinctive in that somatic copy number variants (SCNVs) comprise 92% of all driver mutations (mean of 11.8 pathogenic SCNVs versus 1.0 somatic single-nucleotide variant per CTCL). These findings have implications for new therapeutics.


Mbio | 2012

Insight into the Transmission Biology and Species-Specific Functional Capabilities of Tsetse (Diptera: Glossinidae) Obligate Symbiont Wigglesworthia

Rita V. M. Rio; Rebecca E. Symula; Jingwen Wang; Claudia Lohs; Yi neng Wu; Anna K. Snyder; Robert D. Bjornson; Kenshiro Oshima; Bryan S. Biehl; Nicole T. Perna; Masahira Hattori; Serap Aksoy

ABSTRACT Ancient endosymbionts have been associated with extreme genome structural stability with little differentiation in gene inventory between sister species. Tsetse flies (Diptera: Glossinidae) harbor an obligate endosymbiont, Wigglesworthia, which has coevolved with the Glossina radiation. We report on the ~720-kb Wigglesworthia genome and its associated plasmid from Glossina morsitans morsitans and compare them to those of the symbiont from Glossina brevipalpis. While there was overall high synteny between the two genomes, a large inversion was noted. Furthermore, symbiont transcriptional analyses demonstrated host tissue and development-specific gene expression supporting robust transcriptional regulation in Wigglesworthia, an unprecedented observation in other obligate mutualist endosymbionts. Expression and immunohistochemistry confirmed the role of flagella during the vertical transmission process from mother to intrauterine progeny. The expression of nutrient provisioning genes (thiC and hemH) suggests that Wigglesworthia may function in dietary supplementation tailored toward host development. Furthermore, despite extensive conservation, unique genes were identified within both symbiont genomes that may result in distinct metabolomes impacting host physiology. One of these differences involves the chorismate, phenylalanine, and folate biosynthetic pathways, which are uniquely present in Wigglesworthia morsitans. Interestingly, African trypanosomes are auxotrophs for phenylalanine and folate and salvage both exogenously. It is possible that W. morsitans contributes to the higher parasite susceptibility of its host species. IMPORTANCE Genomic stasis has historically been associated with obligate endosymbionts and their sister species. Here we characterize the Wigglesworthia genome of the tsetse fly species Glossina morsitans and compare it to its sister genome within G. brevipalpis. The similarity and variation between the genomes enabled specific hypotheses regarding functional biology. Expression analyses indicate significant levels of transcriptional regulation and support development- and tissue-specific functional roles for the symbiosis previously not observed in obligate mutualist symbionts. Retention of the genetically expensive flagella within these small genomes was demonstrated to be significant in symbiont transmission and tailored to the unique tsetse fly reproductive biology. Distinctions in metabolomes were also observed. We speculate an additional role for Wigglesworthia symbiosis where infections with pathogenic trypanosomes may depend upon symbiont species-specific metabolic products and thus influence the vector competence traits of different tsetse fly host species. Genomic stasis has historically been associated with obligate endosymbionts and their sister species. Here we characterize the Wigglesworthia genome of the tsetse fly species Glossina morsitans and compare it to its sister genome within G. brevipalpis. The similarity and variation between the genomes enabled specific hypotheses regarding functional biology. Expression analyses indicate significant levels of transcriptional regulation and support development- and tissue-specific functional roles for the symbiosis previously not observed in obligate mutualist symbionts. Retention of the genetically expensive flagella within these small genomes was demonstrated to be significant in symbiont transmission and tailored to the unique tsetse fly reproductive biology. Distinctions in metabolomes were also observed. We speculate an additional role for Wigglesworthia symbiosis where infections with pathogenic trypanosomes may depend upon symbiont species-specific metabolic products and thus influence the vector competence traits of different tsetse fly host species.


international parallel and distributed processing symposium | 2002

TurboBLAST : a parallel implementation of blast built on the turbohub

Robert D. Bjornson; Andrew H. Sherman; Stephen B. Weston; Nathan Willard; James E. Wing

BLAST (Basic Local Alignment Search Tool) is by far the most widely used application for rapid screening of large sequence databases. This paper describes TurboBLAST, a parallel implementation of BLAST suitable for execution on networked clusters of heterogeneous PCs, workstations, or Macintosh computers.


Nature Genetics | 2017

Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands.

Sheng Chih Jin; Jason Homsy; Samir Zaidi; Qiongshi Lu; Sarah U. Morton; Steven R. DePalma; Xue Zeng; Hongjian Qi; Weni Chang; Michael C. Sierant; Wei Chien Hung; Shozeb Haider; Junhui Zhang; James Knight; Robert D. Bjornson; Christopher Castaldi; Irina R. Tikhonoa; Kaya Bilguvar; Shrikant Mane; Stephan J. Sanders; Seema Mital; Mark W. Russell; J. William Gaynor; John Deanfield; Alessandro Giardini; George A. Porter; Deepak Srivastava; Cecelia W. Lo; Yufeng Shen; W. Scott Watkins

Congenital heart disease (CHD) is the leading cause of mortality from birth defects. Here, exome sequencing of a single cohort of 2,871 CHD probands, including 2,645 parent–offspring trios, implicated rare inherited mutations in 1.8%, including a recessive founder mutation in GDF1 accounting for ∼5% of severe CHD in Ashkenazim, recessive genotypes in MYH6 accounting for ∼11% of Shone complex, and dominant FLT4 mutations accounting for 2.3% of Tetralogy of Fallot. De novo mutations (DNMs) accounted for 8% of cases, including ∼3% of isolated CHD patients and ∼28% with both neurodevelopmental and extra-cardiac congenital anomalies. Seven genes surpassed thresholds for genome-wide significance, and 12 genes not previously implicated in CHD had >70% probability of being disease related. DNMs in ∼440 genes were inferred to contribute to CHD. Striking overlap between genes with damaging DNMs in probands with CHD and autism was also found.


Pigment Cell & Melanoma Research | 2014

Identification of PLX4032-resistance mechanisms and implications for novel RAF inhibitors

Jaehyuk Choi; Sean Landrette; Tiffany Wang; Perry Evans; Antonella Bacchiocchi; Robert D. Bjornson; Elaine Cheng; Amy L. Stiegler; Symon Gathiaka; Orlando Acevedo; Titus J. Boggon; Michael Krauthammer; Ruth Halaban; Tian Xu

BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole‐exome sequencing of drug‐resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome‐wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N‐terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance‐conferring second‐site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF‐PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK‐activating, PLX4032‐resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032‐resistant melanoma cells are sensitive to novel, next‐generation BRAF inhibitors, especially the ‘paradox‐blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF‐mutations.

Collaboration


Dive into the Robert D. Bjornson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Murim Choi

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge