Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Sampson is active.

Publication


Featured researches published by Robert D. Sampson.


Nature Communications | 2016

Donor and host photoreceptors engage in material transfer following transplantation of post-mitotic photoreceptor precursors

Rachael A. Pearson; Anai Gonzalez-Cordero; Emma L. West; Joana Ribeiro; Nozie D. Aghaizu; Debbie Goh; Robert D. Sampson; Anastasios Georgiadis; P. V. Waldron; Yanai Duran; Arifa Naeem; Magdalena Kloc; Enrico Cristante; Kamil Kruczek; Katherine Warre-Cornish; Jane C. Sowden; Alexander J. Smith; Robin R. Ali

Photoreceptor replacement by transplantation is proposed as a treatment for blindness. Transplantation of healthy photoreceptor precursor cells into diseased murine eyes leads to the presence of functional photoreceptors within host retinae that express an array of donor-specific proteins. The resulting improvement in visual function was understood to be due to donor cells integrating within host retinae. Here, however, we show that while integration occurs the majority of donor-reporter-labelled cells in the host arises as a result of material transfer between donor and host photoreceptors. Material transfer does not involve permanent donor–host nuclear or cell–cell fusion, or the uptake of free protein or nucleic acid from the extracellular environment. Instead, RNA and/or protein are exchanged between donor and host cells in vivo. These data require a re-evaluation of the mechanisms underlying rescue by photoreceptor transplantation and raise the possibility of material transfer as a strategy for the treatment of retinal disorders.


Nature Communications | 2015

PDGFRα demarcates the cardiogenic clonogenic Sca1+ stem/progenitor cell in adult murine myocardium

Michela Noseda; M Harada; S Mcsweeney; Thomas Leja; E Belian; Dj Stuckey; Msa Paiva; J Habib; I Macaulay; Aj de Smith; Farah Al-Beidh; Robert D. Sampson; Rt Lumbers; P Rao; Stephen E. Harding; Aif Blakemore; Sten Erik Jacobsen; Mauricio Barahona; Schneider

Cardiac progenitor/stem cells in adult hearts represent an attractive therapeutic target for heart regeneration, though (inter)-relationships among reported cells remain obscure. Using single-cell qRT–PCR and clonal analyses, here we define four subpopulations of cardiac progenitor/stem cells in adult mouse myocardium all sharing stem cell antigen-1 (Sca1), based on side population (SP) phenotype, PECAM-1 (CD31) and platelet-derived growth factor receptor-α (PDGFRα) expression. SP status predicts clonogenicity and cardiogenic gene expression (Gata4/6, Hand2 and Tbx5/20), properties segregating more specifically to PDGFRα+ cells. Clonal progeny of single Sca1+ SP cells show cardiomyocyte, endothelial and smooth muscle lineage potential after cardiac grafting, augmenting cardiac function although durable engraftment is rare. PDGFRα− cells are characterized by Kdr/Flk1, Cdh5, CD31 and lack of clonogenicity. PDGFRα+/CD31− cells derive from cells formerly expressing Mesp1, Nkx2-5, Isl1, Gata5 and Wt1, distinct from PDGFRα−/CD31+ cells (Gata5 low; Flk1 and Tie2 high). Thus, PDGFRα demarcates the clonogenic cardiogenic Sca1+ stem/progenitor cell.


Stem cell reports | 2017

Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors

Anai Gonzalez-Cordero; Kamil Kruczek; Arifa Naeem; Milan Fernando; Magdalena Kloc; Joana Ribeiro; Debbie Goh; Yanai Duran; Samuel J.I. Blackford; Laura Abelleira-Hervas; Robert D. Sampson; Ian O. Shum; Matthew J. Branch; Peter J. Gardner; Jane C. Sowden; James W. Bainbridge; Alexander J. Smith; Emma L. West; Rachael A. Pearson; Robin R. Ali

Summary Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration.


Stem cell reports | 2017

Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration

Kamil Kruczek; Anai Gonzalez-Cordero; Debbie Goh; Arifa Naeem; Mindaugas Jonikas; Samuel J.I. Blackford; Magdalena Kloc; Yanai Duran; Anastasios Georgiadis; Robert D. Sampson; Ryea N. Maswood; Alexander J. Smith; Sarah Decembrini; Yvan Arsenijevic; Jane C. Sowden; Rachael A. Pearson; Emma L. West; Robin R. Ali

Summary The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs). Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor β2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1−/− mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation.


Stem cell reports | 2018

Transplanted Donor- or Stem Cell-Derived Cone Photoreceptors Can Both Integrate and Undergo Material Transfer in an Environment-Dependent Manner

Paul V. Waldron; Fabiana Di Marco; Kamil Kruczek; Joana Ribeiro; Anna B. Graca; Claire Hippert; Nozie D. Aghaizu; Aikaterini Kalargyrou; Amanda C. Barber; Giulia Grimaldi; Yanai Duran; Samuel J.I. Blackford; Magdalena Kloc; Debbie Goh; Eduardo Zabala Aldunate; Robert D. Sampson; James W. Bainbridge; Alexander J. Smith; Anai Gonzalez-Cordero; Jane C. Sowden; Robin R. Ali; Rachael A. Pearson

Summary Human vision relies heavily upon cone photoreceptors, and their loss results in permanent visual impairment. Transplantation of healthy photoreceptors can restore visual function in models of inherited blindness, a process previously understood to arise by donor cell integration within the host retina. However, we and others recently demonstrated that donor rod photoreceptors engage in material transfer with host photoreceptors, leading to the host cells acquiring proteins otherwise expressed only by donor cells. We sought to determine whether stem cell- and donor-derived cones undergo integration and/or material transfer. We find that material transfer accounts for a significant proportion of rescued cells following cone transplantation into non-degenerative hosts. Strikingly, however, substantial numbers of cones integrated into the Nrl−/− and Prph2rd2/rd2, but not Nrl−/−;RPE65R91W/R91W, murine models of retinal degeneration. This confirms the occurrence of photoreceptor integration in certain models of retinal degeneration and demonstrates the importance of the host environment in determining transplantation outcome.


Experimental Eye Research | 2016

Flow cytometric analysis of inflammatory and resident myeloid populations in mouse ocular inflammatory models.

Sidath Liyanage; Peter J. Gardner; Joana Ribeiro; Enrico Cristante; Robert D. Sampson; Ulrich F.O. Luhmann; Robin R. Ali; James W. Bainbridge

Myeloid cells make a pivotal contribution to tissue homeostasis during inflammation. Both tissue-specific resident populations and infiltrating myeloid cells can cause tissue injury through aberrant activation and/or dysregulated activity. Reliable identification and quantification of myeloid cells within diseased tissues is important to understand pathological inflammatory processes. Flow cytometry is a valuable technique for leukocyte analysis, but a standardized flow cytometric method for myeloid cell populations in the eye is lacking. Here, we validate a reproducible flow cytometry gating approach to characterize myeloid cells in several commonly used models of ocular inflammation. We profile and quantify myeloid subsets across these models, and highlight the value of this strategy in identifying phenotypic differences using Ccr2-deficient mice. This method will aid standardization in the field and facilitate future investigations into the roles of myeloid cells during ocular inflammation.


Molecular Therapy | 2018

Prevention of Photoreceptor Cell Loss in a Cln6nclf Mouse Model of Batten Disease Requires CLN6 Gene Transfer to Bipolar Cells

Sophia-Martha kleine Holthaus; Joana Ribeiro; Laura Abelleira-Hervas; Rachael A. Pearson; Yanai Duran; Anastasios Georgiadis; Robert D. Sampson; Matteo Rizzi; Justin Hoke; Ryea N. Maswood; Selina A. Azam; Ulrich F.O. Luhmann; Alexander J. Smith; Sara E. Mole; Robin R. Ali

The neuronal ceroid lipofuscinoses (NCLs) are inherited lysosomal storage disorders characterized by general neurodegeneration and premature death. Sight loss is also a major symptom in NCLs, severely affecting the quality of life of patients, but it is not targeted effectively by brain-directed therapies. Here we set out to explore the therapeutic potential of an ocular gene therapy to treat sight loss in NCL due to a deficiency in the transmembrane protein CLN6. We found that, although Cln6nclf mice presented mainly with photoreceptor degeneration, supplementation of CLN6 in photoreceptors was not beneficial. Because the level of CLN6 is low in photoreceptors but high in bipolar cells (retinal interneurons that are only lost in Cln6-deficient mice at late disease stages), we explored the therapeutic effects of delivering CLN6 to bipolar cells using adeno-associated virus (AAV) serotype 7m8. Bipolar cell-specific expression of CLN6 slowed significantly the loss of photoreceptor function and photoreceptor cells. This study shows that the deficiency of a gene normally expressed in bipolar cells can cause the loss of photoreceptors and that this can be prevented by bipolar cell-directed treatment.


Scientific Reports | 2017

Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye

Peter J. Gardner; Sidath Liyanage; Enrico Cristante; Robert D. Sampson; Andrew D. Dick; Robin R. Ali; James W. Bainbridge

Hypoxia inducible factors (HIFs) are ubiquitously expressed transcription factors important for cell homeostasis during dynamic oxygen levels. Myeloid specific HIFs are crucial for aspects of myeloid cell function, including their ability to migrate into inflamed tissues during autoimmune disease. This contrasts with the concept that accumulation of myeloid cells at ischemic and hypoxic sites results from a lack of chemotactic responsiveness. Here we seek to address the role of HIFs in myeloid trafficking during inflammation in a mouse model of human uveitis. We show using mice with myeloid-specific Cre-deletion of HIFs that myeloid HIFs are dispensable for leukocyte migration into the inflamed eye. Myeloid-specific deletion of Hif1a, Epas1, or both together, had no impact on the number of myeloid cells migrating into the eye. Additionally, stabilization of HIF pathways via deletion of Vhl in myeloid cells had no impact on myeloid trafficking into the inflamed eye. Finally, we chemically induce hypoxemia via hemolytic anemia resulting in HIF stabilization within circulating leukocytes to demonstrate the dispensable role of HIFs in myeloid cell migration into the inflamed eye. These data suggest, contrary to previous reports, that HIF pathways in myeloid cells during inflammation and hypoxia are dispensable for myeloid cell tissue trafficking.


Stem Cell Research & Therapy | 2018

Use of bioreactors for culturing human retinal organoids improves photoreceptor yields

Patrick Ovando-Roche; Emma L. West; Matthew J. Branch; Robert D. Sampson; Milan Fernando; Peter M.G. Munro; Anastasios Georgiadis; Matteo Rizzi; Magdalena Kloc; Arifa Naeem; Joana Ribeiro; Alexander J. Smith; Anai Gonzalez-Cordero; Robin R. Ali

BackgroundThe use of human pluripotent stem cell-derived retinal cells for cell therapy strategies and disease modelling relies on the ability to obtain healthy and organised retinal tissue in sufficient quantities. Generating such tissue is a lengthy process, often taking over 6 months of cell culture, and current approaches do not always generate large quantities of the major retinal cell types required.MethodsWe adapted our previously described differentiation protocol to investigate the use of stirred-tank bioreactors. We used immunohistochemistry, flow cytometry and electron microscopy to characterise retinal organoids grown in standard and bioreactor culture conditions.ResultsOur analysis revealed that the use of bioreactors results in improved laminar stratification as well as an increase in the yield of photoreceptor cells bearing cilia and nascent outer-segment-like structures.ConclusionsBioreactors represent a promising platform for scaling up the manufacture of retinal cells for use in disease modelling, drug screening and cell transplantation studies.


Frontiers in Immunology | 2018

Clinical Remission of Sight-Threatening Non-Infectious Uveitis Is Characterized by an Upregulation of Peripheral T-Regulatory Cell Polarized Towards T-bet and TIGIT

Rose Gilbert; Xiaozhe Zhang; Robert D. Sampson; Michael R. Ehrenstein; Dao X. Nguyen; Mahid Chaudhry; Charles A. Mein; Nadiya Mahmud; Grazyna Galatowicz; Oren Tomkins-Netzer; Virginia L. Calder; Susan Lightman

Background Non-infectious uveitis can cause chronic relapsing and remitting ocular inflammation, which may require high dose systemic immunosuppression to prevent severe sight loss. It has been classically described as an autoimmune disease, mediated by pro-inflammatory Th1 and Th17 T-cell subsets. Studies suggest that natural immunosuppressive CD4+CD25+FoxP3+ T-regulatory cells (Tregs) are involved in resolution of inflammation and may be involved in the maintenance of clinical remission. Objective To investigate whether there is a peripheral blood immunoregulatory phenotype associated with clinical remission of sight-threatening non-infectious uveitis by comparing peripheral blood levels of Treg, Th1, and Th17, and associated DNA methylation and cytokine levels in patients with active uveitic disease, control subjects and patients (with previously active disease) in clinical remission induced by immunosuppressive drugs. Methods Isolated peripheral blood mononuclear cells (PBMC) from peripheral blood samples from prospectively recruited subjects were analyzed by flow cytometry for CD3, CD4, FoxP3, TIGIT, T-bet, and related orphan receptor γt. Epigenetic DNA methylation levels of FOXP3 Treg-specific demethylated region (TSDR), FOXP3 promoter, TBX21, RORC2, and TIGIT loci were determined in cryopreserved PBMC using a next-generation sequencing approach. Related cytokines were measured in blood sera. Functional suppressive capacity of Treg was assessed using T-cell proliferation assays. Results Fifty patients with uveitis (intermediate, posterior, and panuveitis) and 10 control subjects were recruited. The frequency of CD4+CD25+FoxP3+ Treg, TIGIT+ Treg, and T-bet+ Treg and the ratio of Treg to Th1 were significantly higher in remission patients compared with patients with active uveitic disease; and TIGIT+ Tregs were a significant predictor of clinical remission. Treg from patients in clinical remission demonstrated a high level of in vitro suppressive function compared with Treg from control subjects and from patients with untreated active disease. PBMC from patients in clinical remission had significantly lower methylation levels at the FOXP3 TSDR, FOXP3 promoter, and TIGIT loci and higher levels at RORC loci than those with active disease. Clinical remission was also associated with significantly higher serum levels of transforming growth factor β and IL-10, which positively correlated with Treg levels, and lower serum levels of IFNγ, IL-17A, and IL-22 compared with patients with active disease. Conclusion Clinical remission of sight-threatening non-infectious uveitis has an immunoregulatory phenotype characterized by upregulation of peripheral Treg, polarized toward T-bet and TIGIT. These findings may assist with individualized therapy of uveitis, by informing whether drug therapy has induced phenotypically stable Treg associated with long-term clinical remission.

Collaboration


Dive into the Robert D. Sampson's collaboration.

Top Co-Authors

Avatar

Robin R. Ali

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Alexander J. Smith

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Joana Ribeiro

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Yanai Duran

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Anai Gonzalez-Cordero

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Magdalena Kloc

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Rachael A. Pearson

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Arifa Naeem

UCL Institute of Ophthalmology

View shared research outputs
Top Co-Authors

Avatar

Debbie Goh

University College London

View shared research outputs
Top Co-Authors

Avatar

Emma L. West

UCL Institute of Ophthalmology

View shared research outputs
Researchain Logo
Decentralizing Knowledge