Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert D. Tilton is active.

Publication


Featured researches published by Robert D. Tilton.


Environmental Science & Technology | 2010

Impact of nanoscale zero valent iron on geochemistry and microbial populations in trichloroethylene contaminated aquifer materials.

Teresa L. Kirschling; Kelvin B. Gregory; Edwin G. Minkley; Gregory V. Lowry; Robert D. Tilton

Nanoscale zerovalent iron (NZVI) particles are a promising technology for reducing trichloroethylene (TCE) contamination in the subsurface. Prior to injecting large quantities of nanoparticles into the groundwater it is important to understand what impact the particles will have on the geochemistry and indigenous microbial communities. Microbial populations are important not only for nutrient cycling, but also for contaminant remediation and heavy metal immobilization. Microcosms were used to determine the effects of NZVI addition on three different aquifer materials from TCE contaminated sites in Alameda Point, CA, Mancelona, MI, and Parris Island, SC. The oxidation and reduction potential of the microcosms consistently decreased by more than 400 mV when NZVI was added at 1.5 g/L concentrations. Sulfate concentrations decreased in the two coastal aquifer materials, and methane was observed in the presence of NZVI in Alameda Point microcosms, but not in the other two materials. Denaturing gradient gel electrophoresis (DGGE) showed significant shifts in Eubacterial diversity just after the Fe(0) was exhausted, and quantitative polymerase chain reaction (qPCR) analyses showed increases of the dissimilatory sulfite reductase gene (dsrA) and Archaeal 16s rRNA genes, indicating that reducing conditions and hydrogen created by NZVI stimulate both sulfate reducer and methanogen populations. Adding NZVI had no deleterious effect on total bacterial abundance in the microcosms. NZVI with a biodegradable polyaspartate coating increased bacterial populations by an order of magnitude relative to controls. The lack of broad bactericidal effect, combined with the stimulatory effect of polyaspartate coatings, has positive implications for NZVI field applications.


Environmental Science & Technology | 2010

Estimating Attachment of Nano- and Submicrometer-particles Coated with Organic Macromolecules in Porous Media: Development of an Empirical Model

Tanapon Phenrat; Jee Eun Song; Charlotte M. Cisneros; Daniel Schoenfelder; Robert D. Tilton; Gregory V. Lowry

Assessing the environmental transport and fate of manufactured nanoparticles (NPs) and potential exposure risks requires models for predicting attachment of NPs coated with organic macromolecules in porous media. The objective of this study was to determine the properties of coated nanoparticles that control their attachment behavior. Deposition data for a variety of nanoparticles with different types of anionic organic coatings, including natural organic matter (NOM)-coated latex and hematite nanoparticles, and poly(styrenesulfonate)-, carboxymethylcellulose-, and polyaspartate-coated hematite and titanium dioxide nanoparticles (80 data points), were used to develop an empirical correlation between measurable NP properties and their sticking coefficient (alpha) under a variety of electrolyte conditions and flow velocities. Available semiempirical correlations used to predict the attachment efficiency of electrostatically stabilized (uncoated) NPs overestimate the attachment efficiency of nanoparticles coated with NOM or synthetic polyelectrolytes because the correlations neglect electrosteric repulsions and the decreased friction afforded by such coatings that can inhibit attachment to surfaces. Adding a dimensionless parameter (N(LEK)) representing steric repulsions and the decreased friction force afforded by adsorbed NOM or anionic polyelectrolytes in the correlation significantly improves the correlation. This establishes the importance of including the adsorbed NOM- or polyelectrolyte layer properties for estimating the attachment efficiency of NPs in the environment. The form of N(LEK) suggests that limiting unintended transport and exposure to NPs could be achieved by using coatings with the smallest adsorbed mass and polymer density, shortest extended layer thickness, and largest molecular weight that would still afford the desired functionality of the coating.


Journal of Colloid and Interface Science | 1990

Lateral diffusion of bovine serum albumin adsorbed at the solid-liquid interface

Robert D. Tilton; Channing R. Robertson; Alice P. Gast

Abstract The lateral mobility of eosin isothiocyanate-labeled bovine serum albumin irreversibly adsorbed to poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) surfaces from aqueous solution was measured by a combination of total internal reflection fluorescence and fluorescence recovery after pattern photobleaching techniques. Lateral mobility over distances of several micrometers was probed by photobleaching and monitoring fluorescence with the fringe pattern formed by two intersecting coherent laser beams in total internal reflection. The period of the fringes determined the characteristic length for transport on the surface and was varied by changing the angle of intersection. The dependence of the fluorescence recovery time on the period of the fringes indicates that lateral migration of the adsorbed protein on PMMA is by surface diffusion with D = (1.2 ± 0.3) × 10−9cm2/s, while the extent of fluorescence recovery reveals the coexistence of a mobile population and a population that is apparently immobile over 20 min. For comparison, D = (2.6 ± 0.1) × 10−9cm2/s on PDMS.


Journal of Colloid and Interface Science | 2012

Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media.

Hye-Jin Kim; Tanapon Phenrat; Robert D. Tilton; Gregory V. Lowry

Polymer coatings on nano-sized remediation agents and subsurface heterogeneity will affect their transport, likely in a pH-dependent manner. The effect of pH on the aggregation of polymer-coated nanoscale zerovalent iron (nZVI) and its deposition onto sand and clay (kaolinite) surfaces was studied. nZVI coatings included a high molecular weight (90 kg/mol) strong polyanion, poly(methacrylic acid)-b-(methy methacrylate)-b-(styrenesulfonate) (PMAA-PMMA-PSS) and a low molecular weight (2.5 kg/mol) weak polyanion, polyaspartate. Aggregation and deposition increased with decreasing pH for both polyelectrolytes. The extent was greater for the low MW polyaspartate coated nZVI. Enhanced deposition at lower pH was indicated because the elutability of polyaspartate-modified hematite (which did not aggregate) also decreased at lower pH. The greater deposition onto clay minerals compared to similar sized silica fines is attributed to charge heterogeneity on clay mineral surfaces, which is sensitive to pH. Heteroaggregation between kaolinite particles and nZVI over the pH range 6-8 confirmed this assertion. Excess unadsorbed polyelectrolyte in solution (100mg/L) enhanced the transport of modified nZVI by minimizing aggregation and deposition onto sand and clay. These results indicate that site physical and chemical heterogeneity must be considered when designing an nZVI emplacement strategy.


Environmental Science & Technology | 2012

Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver.

Stacy M. Wirth; Gregory V. Lowry; Robert D. Tilton

Motivated by the need to understand environmental risks posed by potentially biocidal engineered nanoparticles, the effects of silver nanoparticle (AgNP) exposure on viability in single species Pseudomonas fluorescens biofilms were determined via dye staining methods. AgNP dispersions, containing both particles and dissolved silver originating from the particles, negatively impacted biofilm viability in a dose-dependent manner. No silver treatments (up to 100 ppm AgNPs) resulted in 100% biofilm viability loss, even though these same concentrations caused complete viability loss in planktonic culture, suggesting some biofilm tolerance to AgNP toxicity. Colloidally stable AgNP suspensions exhibited greater toxicity to biofilms than corresponding particle-free supernatants containing only dissolved silver released from the particles. This distinct nanoparticle-specific toxicity was not observed for less stable, highly aggregated particles, suggesting that biofilms were protected against nanoparticle aggregate toxicity. In both the stable and highly aggregated dispersions, dissolved silver made a significant contribution to overall toxicity. Therefore, despite increased colloidal stability when humic acid adsorbed to AgNPs, the presence of humic acid mitigated the toxicity of AgNP suspensions because it bound to silver ions in solution.


Langmuir | 2009

Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media.

Jit Kang Lim; Sara A. Majetich; Robert D. Tilton

Nanoparticles with monodisperse, spherical magnetic iron oxide cores and contiguous gold shells (Fe/Au NPs) have been synthesized in order to combine magnetophoretic responsiveness and localized surface plasmon resonance in a single nanoparticle. Such particles are sufficiently charged to be stable against flocculation in low ionic strength media, but they require surface modification to be stably dispersed in elevated ionic strength media that are appropriate for biotechnological applications. Dynamic light scattering and ultraviolet-visible spectrophotometry are used to monitor the colloidal stability of Fe/Au NPs in pH 7.4 phosphate buffered saline containing 154 mM NaCl (PBS). While uncoated particles flocculate immediately upon introduction to PBS, Fe/Au NPs with adsorbed layers of bovine serum albumin or the amphiphilic triblock copolymers Pluronic F127 and Pluronic F68 resist flocculation after more than 5 days in PBS. Adsorbed dextran allowed flocculation that was limited to the formation of small clusters, while poly(ethylene glycol) homopolymers ranging in molecular weight from 6000 to 100 000 were ineffective steric stabilizers. The effectiveness of adsorbed Pluronic copolymers as steric stabilizers was interpreted in terms of the measured adsorbed layer thickness and extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory predictions of interparticle interactions.


Environmental Science & Technology | 2011

Hydrophobic interactions increase attachment of gum Arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces.

Jee Eun Song; Tanapon Phenrat; Stella M. Marinakos; Yao Xiao; Jie Liu; Mark R. Wiesner; Robert D. Tilton; Gregory V. Lowry

A fundamental understanding of attachment of surface-coated nanoparticles (NPs) is essential to predict the distribution and potential risks of NPs in the environment. Column deposition studies were used to examine the effect of surface-coating hydrophobicity on NP attachment to collector surfaces in mixtures with varying ratios of octadecylichlorosilane (OTS)-coated (hydrophobic) glass beads and clean silica (hydrophilic) glass beads. Silver nanoparticles (AgNPs) coated with organic coatings of varying hydrophobicity, including citrate, polyvinylpyrrolidone (PVP), and gum arabic (GA), were used. The attachment efficiencies of GA and PVP AgNPs increased by 2- and 4-fold, respectively, for OTS-coated glass beads compared to clean glass beads. Citrate AgNPs showed no substantial change in attachment efficiency for hydrophobic compared to hydrophilic surfaces. The attachment efficiency of PVP-, GA-, and citrate-coated AgNPs to hydrophobic collector surfaces correlated with the relative hydrophobicity of the coatings. The differences in the observed attachment efficiencies among AgNPs could not be explained by classical DLVO, suggesting that hydrophobic interactions between AgNPs and OTS-coated glass beads were responsible for the increase in attachment of surface-coated AgNPs with greater hydrophobicity. This study indicates that the overall attachment efficiency of AgNPs will be influenced by the hydrophobicity of the NP coating and the fraction of hydrophobic surfaces in the environment.


Environmental Science & Technology | 2013

Effects of molecular weight distribution and chemical properties of natural organic matter on gold nanoparticle aggregation.

Stacey M. Louie; Robert D. Tilton; Gregory V. Lowry

The complexity of natural organic matter (NOM) motivates determination of how specific components in a NOM mixture interact with and affect nanoparticle (NP) behavior. The effects of two Suwannee River NOM fractions (separated by a 100,000 g/mol ultrafiltration membrane) on gold NP aggregation are compared. The weight-average molecular weight, Mw, for the unfractionated NOM was 23,300 g/mol, determined by size exclusion chromatography with multiangle light scattering. The NOM was comprised of ~1.8 wt % of >100,000 g/mol retentate (NOMr, Mw = 691,000 g/mol) and 98 wt % of filtrate (NOMf, Mw = 12,800 g/mol). Ten ppm of NOMr provided significantly better NP stability against aggregation than 10 ppm of NOMf in 100 mM NaCl due to steric effects. In the unfractionated NOM, the relative importance of the two components was concentration-dependent. For a low concentration of unfractionated NOM (10 ppm), both fractions contributed to the NOM effects; for a high concentration (560 ppm), NP stability was controlled by the small amount (10 ppm) of NOMr present, rather than the higher amount (550 ppm) of NOMf. Therefore, large humic aggregates in a heterogeneous NOM sample can have disproportionately strong effects, and characterization of Mw distributions (rather than average Mw) may be required to explain NOM effects on NP behavior.


Electrophoresis | 2002

Critical factors for high-performance physically adsorbed (dynamic) polymeric wall coatings for capillary electrophoresis of DNA

Erin A. S. Doherty; K. Derek Berglund; Brett A. Buchholz; Igor V. Kourkine; Todd M. Przybycien; Robert D. Tilton; Annelise E. Barron

Physically adsorbed (dynamic) polymeric wall coatings for microchannel electrophoresis have distinct advantages over covalently linked coatings. In order to determine the critical factors that control the formation of dynamic wall coatings, we have created a set of model polymers and copolymers based on N,N‐dimethylacrylamide (DMA) and N,N‐diethylacrylamide (DEA), and studied their adsorption behavior from aqueous solution as well as their performance for microchannel electrophoresis of DNA. This study is revealing in terms of the polymer properties that help create an “ideal” wall coating. Our measurements indicate that the chemical nature of the coating polymer strongly impacts its electroosmotic flow (EOF) suppression capabilities. Additionally, we find that a critical polymer chain length is required for polymers of this type to perform effectively as microchannel wall coatings. The effective mobilities of double‐stranded (dsDNA) fragments within dynamically coated capillaries were determined in order to correlate polymer hydrophobicity with separation performance. Even for dsDNA, which is not expected to be a strongly adsorbing analyte, wall coating hydrophobicity has a deleterious influence on separation performance.


ACS Nano | 2011

Magnetophoresis of nanoparticles.

JitKang Lim; Caitlin Lanni; Eric R. Evarts; Frederick Lanni; Robert D. Tilton; Sara A. Majetich

Iron oxide cores of 35 nm are coated with gold nanoparticles so that individual particle motion can be tracked in real time through the plasmonic response using dark field optical microscopy. Although Brownian and viscous drag forces are pronounced for nanoparticles, we show that magnetic manipulation is possible using large magnetic field gradients. The trajectories are analyzed to separate contributions from the different types of forces. With field gradients up to 3000 T/m, forces as small as 1.5 fN are detected.

Collaboration


Dive into the Robert D. Tilton's collaboration.

Top Co-Authors

Avatar

Gregory V. Lowry

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanapon Phenrat

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Stephen Garoff

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Navid B. Saleh

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Kevin Sirk

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sara A. Majetich

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Hye-Jin Kim

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge