Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert E. Wolfe is active.

Publication


Featured researches published by Robert E. Wolfe.


IEEE Geoscience and Remote Sensing Letters | 2006

A Landsat surface reflectance dataset for North America, 1990-2000

Jeffrey G. Masek; Eric F. Vermote; Nazmi El Saleous; Robert E. Wolfe; Forrest G. Hall; Karl Fred Huemmrich; Feng Gao; Jonathan Kutler; Teng-Kui Lim

The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center has processed and released 2100 Landsat Thematic Mapper and Enhanced Thematic Mapper Plus surface reflectance scenes, providing 30-m resolution wall-to-wall reflectance coverage for North America for epochs centered on 1990 and 2000. This dataset can support decadal assessments of environmental and land-cover change, production of reflectance-based biophysical products, and applications that merge reflectance data from multiple sensors [e.g., the Advanced Spaceborne Thermal Emission and Reflection Radiometer, Multiangle Imaging Spectroradiometer, Moderate Resolution Imaging Spectroradiometer (MODIS)]. The raw imagery was obtained from the orthorectified Landsat GeoCover dataset, purchased by NASA from the Earth Satellite Corporation. Through the LEDAPS project, these data were calibrated, converted to top-of-atmosphere reflectance, and then atmospherically corrected using the MODIS/6S methodology. Initial comparisons with ground-based optical thickness measurements and simultaneously acquired MODIS imagery indicate comparable uncertainty in Landsat surface reflectance compared to the standard MODIS reflectance product (the greater of 0.5% absolute reflectance or 5% of the recorded reflectance value). The rapid automated nature of the processing stream also paves the way for routine high-level products from future Landsat sensors.


Remote Sensing of Environment | 2002

An overview of MODIS land data processing and product status

Christopher O. Justice; J. R. G. Townshend; Eric F. Vermote; Edward J. Masuoka; Robert E. Wolfe; Nazmi El Saleous; David P. Roy; Jeffrey T. Morisette

Data from the first Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on the NASA Terra Platform are being used to provide a new generation of land data products in support of the National Aeronautics and Space Administration (NASA)s Earth Science Enterprise, global change research and natural resource management. The MODIS products include global data sets heretofore unavailable, derived from new moderate resolution spectral bands with spatial resolutions of 250 m to 1 km. A partnership between Science Team members and the MODIS Science Data Support Team is producing data sets of unprecedented volume and number for the land research and applications. This overview paper provides a summary of the instrument performance and status, the data production system, the products, their status and availability for land studies.


Remote Sensing of Environment | 2002

Achieving sub-pixel geolocation accuracy in support of MODIS land science

Robert E. Wolfe; Masahiro Nishihama; Albert J. Fleig; James Kuyper; David P. Roy; James C. Storey; Fred S. Patt

The Moderate Resolution Imaging Spectroradiometer (MODIS) was launched in December 1999 on the polar orbiting Terra spacecraft and since February 2000 has been acquiring daily global data in 36 spectral bands—29 with 1 km, five with 500 m, and two with 250 m nadir pixel dimensions. The Terra satellite has on-board exterior orientation (position and attitude) measurement systems designed to enable geolocation of MODIS data to approximately 150 m (1r) at nadir. A global network of ground control points is being used to determine biases and trends in the sensor orientation. Biases have been removed by updating models of the spacecraft and instrument orientation in the MODIS geolocation software several times since launch and have improved the MODIS geolocation to approximately 50 m (1r) at nadir. This paper overviews the geolocation approach, summarizes the first year of geolocation analysis, and overviews future work. The approach allows an operational characterization of the MODIS geolocation errors and enables individual MODIS observations to be geolocated to the sub-pixel accuracies required for terrestrial global change applications. D 2002 Elsevier Science Inc. All rights reserved.


IEEE Transactions on Geoscience and Remote Sensing | 1998

MODIS land data storage, gridding, and compositing methodology: Level 2 grid

Robert E. Wolfe; David P. Roy; Eric F. Vermote

The methodology used to store a number of the Moderate Resolution Imaging Spectroradiometer (MODIS) land products is described. The approach has several scientific and data processing advantages over conventional approaches used to store remotely sensed data sets and may be applied to any remote-sensing data set in which the observations are geolocated to subpixel accuracy. The methodology will enable new algorithms to be more accurately developed because important information about the intersection between the sensor observations and the output grid cells are preserved. The methodology will satisfy the very different needs of the MODIS land product generation algorithms, allow sophisticated users to develop their own application-specific MODIS land data sets, and enable efficient processing and reprocessing of MODIS land products. A generic MODIS land gridding and compositing algorithm that takes advantage of the data storage structure and enables the exploitation of multiple observations of the surface more fully than conventional approaches is described. The algorithms are illustrated with simulated MODIS data, and the practical considerations of increased data storage are discussed.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Large seasonal swings in leaf area of Amazon rainforests

Ranga B. Myneni; Wenze Yang; Ramakrishna R. Nemani; Alfredo R. Huete; Robert E. Dickinson; Yuri Knyazikhin; Kamel Didan; Rong Fu; Robinson I. Negrón Juárez; S. Saatchi; Hirofumi Hashimoto; Kazuhito Ichii; Nikolay V. Shabanov; Bin Tan; Piyachat Ratana; Jeffrey L. Privette; Jeffrey T. Morisette; Eric F. Vermote; David P. Roy; Robert E. Wolfe; Mark A. Friedl; Steven W. Running; Petr Votava; Nazmi El-Saleous; Sadashiva Devadiga; Yin Su; Vincent V. Salomonson

Despite early speculation to the contrary, all tropical forests studied to date display seasonal variations in the presence of new leaves, flowers, and fruits. Past studies were focused on the timing of phenological events and their cues but not on the accompanying changes in leaf area that regulate vegetation–atmosphere exchanges of energy, momentum, and mass. Here we report, from analysis of 5 years of recent satellite data, seasonal swings in green leaf area of ≈25% in a majority of the Amazon rainforests. This seasonal cycle is timed to the seasonality of solar radiation in a manner that is suggestive of anticipatory and opportunistic patterns of net leaf flushing during the early to mid part of the light-rich dry season and net leaf abscission during the cloudy wet season. These seasonal swings in leaf area may be critical to initiation of the transition from dry to wet season, seasonal carbon balance between photosynthetic gains and respiratory losses, and litterfall nutrient cycling in moist tropical forests.


IEEE Transactions on Geoscience and Remote Sensing | 2014

Early On-Orbit Performance of the Visible Infrared Imaging Radiometer Suite Onboard the Suomi National Polar-Orbiting Partnership (S-NPP) Satellite

Changyong Cao; Frank J. De Luccia; Xiaoxiong Xiong; Robert E. Wolfe; Fuzhong Weng

The Visible Infrared Imaging Radiometer Suite (VIIRS) is one of the key environmental remote-sensing instruments onboard the Suomi National Polar-Orbiting Partnership spacecraft, which was successfully launched on October 28, 2011 from the Vandenberg Air Force Base, California. Following a series of spacecraft and sensor activation operations, the VIIRS nadir door was opened on November 21, 2011. The first VIIRS image acquired signifies a new generation of operational moderate resolution-imaging capabilities following the legacy of the advanced very high-resolution radiometer series on NOAA satellites and Terra and Aqua Moderate-Resolution Imaging Spectroradiometer for NASAs Earth Observing system. VIIRS provides significant enhancements to the operational environmental monitoring and numerical weather forecasting, with 22 imaging and radiometric bands covering wavelengths from 0.41 to 12.5 microns, providing the sensor data records for 23 environmental data records including aerosol, cloud properties, fire, albedo, snow and ice, vegetation, sea surface temperature, ocean color, and nigh-time visible-light-related applications. Preliminary results from the on-orbit verification in the postlaunch check-out and intensive calibration and validation have shown that VIIRS is performing well and producing high-quality images. This paper provides an overview of the on-orbit performance of VIIRS, the calibration/validation (cal/val) activities and methodologies used. It presents an assessment of the sensor initial on-orbit calibration and performance based on the efforts from the VIIRS-SDR team. Known anomalies, issues, and future calibration efforts, including the long-term monitoring, and intercalibration are also discussed.


Remote Sensing of Environment | 2002

The MODIS Land product quality assessment approach

David P. Roy; Jordan Borak; Sadashiva Devadiga; Robert E. Wolfe; Min Zheng; Jacques Descloitres

The correct interpretation of scientific information from global, long-term series of remote sensing products requires the ability to discriminate between product artifacts and changes in the Earth processes being monitored. A suite of global land surface products is made from Moderate Resolution Imaging Spectroradiometer (MODIS) instrument data. Quality assessment (QA) is an integral part of this production chain and focuses on evaluating and documenting the scientific quality of the products with respect to their intended performance. This paper describes the QA approach adopted by the MODIS Land (MODLAND) Science Team and coordinated by the MODIS Land Data Operational Product Evaluation (LDOPE) facility. The described methodology represents a new approach for assessing and ensuring the performance of land remote sensing products that are generated on a systematic basis.


IEEE Geoscience and Remote Sensing Letters | 2008

An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series

Feng Gao; Jeffrey T. Morisette; Robert E. Wolfe; G. A. Ederer; Jeffrey A. Pedelty; Edward J. Masuoka; Ranga B. Myneni; Bin Tan; Joanne Nightingale

Ecological and climate models require high-quality consistent biophysical parameters as inputs and validation sources. NASAs moderate resolution imaging spectroradiometer (MODIS) biophysical products provide such data and have been used to improve our understanding of climate and ecosystem changes. However, the MODIS time series contains occasional lower quality data, gaps from persistent clouds, cloud contamination, and other gaps. Many modeling efforts, such as those used in the North American Carbon Program, that use MODIS data as inputs require gap-free data. This letter presents the algorithm used within the MODIS production facility to produce temporally smoothed and spatially continuous biophysical data for such modeling applications. We demonstrate the algorithm with an example from the MODIS-leaf-area-index (LAI) product. Results show that the smoothed LAI agrees with high-quality MODIS LAI very well. Higher R-squares and better linear relationships have been observed when high-quality retrieval in each individual tile reaches 40% or more. These smoothed products show similar data quality to MODIS high-quality data and, therefore, can be substituted for low-quality retrievals or data gaps.


International Journal of Digital Earth | 2012

Global characterization and monitoring of forest cover using Landsat data: opportunities and challenges

J. R. G. Townshend; Jeffrey G. Masek; Chengquan Huang; Eric F. Vermote; Feng Gao; Saurabh Channan; Joseph O. Sexton; Min Feng; Ramghuram Narasimhan; Do-Hyung Kim; Kuan Song; Dan-Xia Song; Xiao-Peng Song; Praveen Noojipady; Bin Tan; Matthew C. Hansen; Mengxue Li; Robert E. Wolfe

Abstract The compilation of global Landsat data-sets and the ever-lowering costs of computing now make it feasible to monitor the Earths land cover at Landsat resolutions of 30 m. In this article, we describe the methods to create global products of forest cover and cover change at Landsat resolutions. Nevertheless, there are many challenges in ensuring the creation of high-quality products. And we propose various ways in which the challenges can be overcome. Among the challenges are the need for atmospheric correction, incorrect calibration coefficients in some of the data-sets, the different phenologies between compilations, the need for terrain correction, the lack of consistent reference data for training and accuracy assessment, and the need for highly automated characterization and change detection. We propose and evaluate the creation and use of surface reflectance products, improved selection of scenes to reduce phenological differences, terrain illumination correction, automated training selection, and the use of information extraction procedures robust to errors in training data along with several other issues. At several stages we use Moderate Resolution Spectroradiometer data and products to assist our analysis. A global working prototype product of forest cover and forest cover change is included.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2011

An Enhanced TIMESAT Algorithm for Estimating Vegetation Phenology Metrics From MODIS Data

Bin Tan; Jeffrey T. Morisette; Robert E. Wolfe; Feng Gao; G. A. Ederer; Joanne Nightingale; Jeffrey A. Pedelty

An enhanced TIMESAT algorithm was developed for retrieving vegetation phenology metrics from 250 m and 500 m spatial resolution Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indexes (VI) over North America. MODIS VI data were pre-processed using snow-cover and land surface temperature data, and temporally smoothed with the enhanced TIMESAT algorithm. An objective third derivative test was applied to define key phenology dates and retrieve a set of phenology metrics. This algorithm has been applied to two MODIS VIs: Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI). In this paper, we describe the algorithm and use EVI as an example to compare three sets of TIMESAT algorithm/MODIS VI combinations: (a) original TIMESAT algorithm with original MODIS VI, (b) original TIMESAT algorithm with pre-processed MODIS VI, and (c) enhanced TIMESAT and pre-processed MODIS VI. All retrievals were compared with ground phenology observations, some made available through the National Phenology Network. Our results show that for MODIS data in middle to high latitude regions, snow and land surface temperature information is critical in retrieving phenology metrics from satellite observations. The results also show that the enhanced TIMESAT algorithm can better accommodate growing season start and end dates that vary significantly from year to year. The TIMESAT algorithm improvements contribute to more spatial coverage and more accurate retrievals of the phenology metrics. Among three sets of TIMESAT/MODIS VI combinations, the start of the growing season metric predicted by the enhanced TIMESAT algorithm using pre-processed MODIS VIs has the best associations with ground observed vegetation greenup dates.

Collaboration


Dive into the Robert E. Wolfe's collaboration.

Top Co-Authors

Avatar

Edward J. Masuoka

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Feng Gao

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Jeffrey G. Masek

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Marc L. Imhoff

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Eric F. Vermote

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Bin Tan

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

David P. Roy

South Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Sadashiva Devadiga

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Joanne Nightingale

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge