Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert F. H. Dekker is active.

Publication


Featured researches published by Robert F. H. Dekker.


Biotechnology Advances | 2012

From plant biomass to bio-based chemicals: Latest developments in xylan research

Rudolf Deutschmann; Robert F. H. Dekker

For a hundred years or more, oil and natural gas has supplied fuel and other raw chemicals to support economic growth. In the last decades their shrinking reservoirs and the increasing cost of production has become obvious, leading researchers to look for alternative substitutes of all the chemical materials presently derived from oil and gas. This review is focused on xylan, the second most abundant plant polysaccharide on our planet. Some xylan-derived products have already found commercial applications (ethanol, xylitol, xylo-oligosaccharides) while others could have a great future in a wide range of industries. The chemical and structural variations of xylans produced by different plants, and the concentration of xylan in various plant resources are summarized. This review discusses the latest research developments in extraction and purification methodologies, and chemical modification, as well as the analytical methods necessary for xylan related research.


PLOS ONE | 2014

Metformin Induces Apoptosis and Cell Cycle Arrest Mediated by Oxidative Stress, AMPK and FOXO3a in MCF-7 Breast Cancer Cells

Eveline A.I.F. Queiroz; Stephanie Puukila; Rosangela Santos Eichler; Sandra Coccuzzo Sampaio; Heidi L. Forsyth; Simon J. Lees; Aneli M. Barbosa; Robert F. H. Dekker; Zuleica B. Fortes; Neelam Khaper

Recent studies have demonstrated that the anti-diabetic drug, metformin, can exhibit direct antitumoral effects, or can indirectly decrease tumor proliferation by improving insulin sensitivity. Despite these recent advances, the underlying molecular mechanisms involved in decreasing tumor formation are not well understood. In this study, we examined the antiproliferative role and mechanism of action of metformin in MCF-7 cancer cells treated with 10 mM of metformin for 24, 48, and 72 hours. Using BrdU and the MTT assay, it was found that metformin demonstrated an antiproliferative effect in MCF-7 cells that occurred in a time- and concentration- dependent manner. Flow cytometry was used to analyze markers of cell cycle, apoptosis, necrosis and oxidative stress. Exposure to metformin induced cell cycle arrest in G0-G1 phase and increased cell apoptosis and necrosis, which were associated with increased oxidative stress. Gene and protein expression were determined in MCF-7 cells by real time RT-PCR and western blotting, respectively. In MCF-7 cells metformin decreased the activation of IRβ, Akt and ERK1/2, increased p-AMPK, FOXO3a, p27, Bax and cleaved caspase-3, and decreased phosphorylation of p70S6K and Bcl-2 protein expression. Co-treatment with metformin and H2O2 increased oxidative stress which was associated with reduced cell number. In the presence of metformin, treating with SOD and catalase improved cell viability. Treatment with metformin resulted in an increase in p-p38 MAPK, catalase, MnSOD and Cu/Zn SOD protein expression. These results show that metformin has an antiproliferative effect associated with cell cycle arrest and apoptosis, which is mediated by oxidative stress, as well as AMPK and FOXO3a activation. Our study further reinforces the potential benefit of metformin in cancer treatment and provides novel mechanistic insight into its antiproliferative role.


International Journal of Biological Macromolecules | 2015

Free-radical scavenging properties and antioxidant activities of botryosphaeran and some other β-D-glucans

Ellen Cristine Giese; Jacob Gascon; Gianluca Anzelmo; Aneli M. Barbosa; Mário Antônio A. Cunha; Robert F. H. Dekker

β-D-Glucans are known to present antitumor, anticancer, and anti-inflammatory activities that are influenced by their own antioxidant capacity. The antioxidant activity of botryosphaeran, an exopolysaccharide of the (1 → 3;1 → 6)-β-D-glucan type produced by the Botryosphaeria rhodina MAMB-05 was evaluated and compared to some other β-D-glucans (lasiodiplodan an exocellular (1 → 6)-β-D-glucan from Lasiodiplodia theobromae, laminarin and curdlan), and oligosaccharides, disaccharides, and monosaccharides in a study of scavenging activities of free radicals in-vitro. Botryosphaeran displayed high total antioxidant activity (80%) as well as good scavenging activity against hydroxyl radical (90.6%), superoxide anion (37%), hydrogen peroxide (38%), and nitric oxide radical (90%). No reducing power, metal-chelating capacity or inhibition of lipid peroxidation was observed for these β-D-glucans. The results demonstrated that botryosphaeran exhibited effective antioxidant activity as supported by many different assays, suggesting that this β-D-glucan may serve as a source of a new bioactive compound with effective antioxidant activity.


International Journal of Biological Macromolecules | 2009

Sulfonation and anticoagulant activity of botryosphaeran from Botryosphaeria rhodina MAMB-05 grown on fructose

Simone Ferreira Mendes; Osvaldo dos Santos; Aneli M. Barbosa; Ana Flora Dalberto Vasconcelos; Gabriel Aranda-Selverio; Nilson K. Monteiro; Robert F. H. Dekker; Mariana S. Pereira; Ana Maria Freire Tovar; Paulo A.S. Mourão; Maria de Lourdes Corradi da Silva

Botryosphaeran (EPS(FRU)), an exopolysaccharide of the beta-(1-->3,1-->6)-d-glucan type with 31% branching at C-6, is produced by the fungus Botryosphaeria rhodina MAMB-05 when grown on fructose as carbon source. Botryosphaeran was derivatized by sulfonation to induce anticoagulant activity. The effectiveness of the sulfonation reaction by chlorosulfonic acid in pyridine was monitored by the degree of substitution and FT-IR analysis of the sulfonated EPS(FRU) (once sulfonated, EPS(FRUSULF); and re-sulfonated, EPS(FRURESULF)). Activated partial thromboplastin time (APTT) and thrombin time (TT) tests of EPS(FRURESULF) indicated significant in vitro anticoagulant activity that was dose-dependent. EPS(FRU) did not inhibit any of the coagulation tests.


Biotechnology Advances | 2015

Forest biorefinery: Potential of poplar phytochemicals as value-added co-products

Rakshit K. Devappa; Sudip Kumar Rakshit; Robert F. H. Dekker

The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species.


Mycobiology | 2011

Hypoglycemic and Hypocholesterolemic Effects of Botryosphaeran from Botryosphaeria rhodina MAMB-05 in Diabetes-Induced and Hyperlipidemia Conditions in Rats

Carolina C. B. O. Miranda-Nantes; Eveline Aparecida Isquierdo Fonseca; Cássia T. B. V. Zaia; Robert F. H. Dekker; Neelam Khaper; Inar Alves de Castro; Aneli M. Barbosa

Abstract Botryosphaeran, a water-soluble exopolysaccharide of the β-(1 → 3;1 → 6)-D-glucan type that has been isolated from the culture medium of Botryosphaeria rhodina MAMB-05 grown in submerged fermentation using glucose as the sole carbon source, was previously demonstrated to be non-genotoxic in peripheral blood and bone marrow, and exhibited strong anticlastogenic activity. In the present study, the effects of botryosphaeran were investigated in streptozotocin-induced diabetic rats as well as in high-fat diet-fed hyperlipidemic Wistar rats. The plasma glucose level was reduced by 52% in the diabetic group of rats after administration of 12 mg botryosphaeran/kg body weight of the rats (b.w.)/day by gavage over 15 days. A reduction in the median ration intake was accompanied by an increase in the median body weight gain, as well as the efficiency of food conversion. These results demonstrate that botryosphaeran has protective effects by reducing the symptoms of cachexia in Diabetes mellitus. Botryosphaeran administered by gavage at a concentration of 12 mg botryosphaeran/kg b.w./day over 15 days also reduced the plasma levels of total cholesterol and low density lipoprotein-cholesterol by 18% and 27%, respectively, in hyperlipidemic rats. Based on these findings, we conclude that botryosphaeran possesses hypoglycemic and hypocholesterolemic properties in conditions of diabetes mellitus and hyperlipidemia, respectively, and may be used as an oral anti-diabetic agent.


Carbohydrate Polymers | 2013

Sulfonation and anticoagulant activity of fungal exocellular β-(1→6)-D-glucan (lasiodiplodan).

Ana Flora Dalberto Vasconcelos; Robert F. H. Dekker; Aneli M. Barbosa; Elaine R. Carbonero; Joana Léa Meira Silveira; Bianca F. Glauser; Mariana S. Pereira; Maria de Lourdes Corradi da Silva

An exocellular β-(1→6)-D-glucan (lasiodiplodan) produced by a strain of Lasiodiplodia theobromae (MMLR) grown on sucrose was derivatized by sulfonation to promote anticoagulant activity. The structural features of the sulfonated β-(1→6)-D-glucan were investigated by UV-vis, FT-IR and (13)C NMR spectroscopy, and the anticoagulant activity was investigated by the classical coagulation assays APTT, PT and TT using heparin as standard. The content of sulfur and degree of substitution of the sulfonated glucan was 11.73% and 0.95, respectively. UV spectroscopy showed a band at 261 nm due to the unsaturated bond formed in the sulfonation reaction. Results of FT-IR and (13)C NMR indicated that sulfonyl groups were inserted on the polysaccharide. The sulfonated β-(1→6)-D-glucan presented anticoagulant activity as demonstrated by the increase in dose dependence of APTT and TT, and these actions most likely occurred because of the inserted sulfonate groups on the polysaccharide. The lasiodiplodan did not inhibit the coagulation tests.


Enzyme and Microbial Technology | 2015

Fungal demethylation of Kraft lignin

Linyou Zou; Brian M. Ross; Leonard J. Hutchison; Lew P. Christopher; Robert F. H. Dekker; Lada Malek

Demethylation of industrial lignin has been for long coveted as a pathway to the production of an abundant natural substitute for fossil-oil derived phenol. In an attempt to possibly identify a novel Kraft lignin-demethylating enzyme, we surveyed a collection of fungi by using selected ion flow tube-mass spectrometry (SIFT-MS). This method readily identifies methanol resulting from lignin demethylation activity. Absidia cylindrospora, and unidentified Cylindrocladium sp. and Aspergillus sp. were shown to metabolize lignin via different pathways, based on the HPLC analysis of lignin fragments. Of these three, Cylindrocladium and Aspergillus were shown to retain most of the lignin intact after 3 weeks in culture, while removing about 40% of the available methoxy groups. Our results demonstrate that after optimization of culture and lignin recovery methods, biological modification of Kraft lignin may be a feasible pathway to obtaining demethylated lignin for further industrial use.


The International Journal of Biochemistry & Cell Biology | 2015

Antiproliferative and pro-apoptotic effects of three fungal exocellular β-glucans in MCF-7 breast cancer cells is mediated by oxidative stress, AMP-activated protein kinase (AMPK) and the Forkhead transcription factor, FOXO3a.

Eveline A.I.F. Queiroz; Zuleica B. Fortes; Mário Antônio Alves da Cunha; Aneli M. Barbosa; Neelam Khaper; Robert F. H. Dekker

Fungal β-d-glucans of the (1→3)-type are known to exhibit direct antitumor effects, and can also indirectly decrease tumor proliferation through immunomodulatory responses. The underlying molecular mechanisms involved in decreasing tumor formation, however, are not well understood. In this study, we examined the antiproliferative role and mechanism of action of three different fungal exocellular β-glucans in MCF-7 breast cancer cells. The β-glucans were obtained from Botryosphaeria rhodina MAMB-05 [two botryosphaerans; (1→3)(1→6)-β-d-glucan; one produced on glucose, the other on fructose] and Lasiodiplodia theobromae MMPI [lasiodiplodan; (1→6)-β-d-glucan, produced on glucose]. Using the cell proliferation-MTT assay, we showed that the β-glucans exhibited a time- and concentration-dependent antiproliferative activity (IC50, 100μg/ml). Markers of cell cycle, apoptosis, necrosis and oxidative stress were analyzed using flow cytometry, RT-PCR and Western blotting. Exposure to β-glucans increased apoptosis, necrosis, oxidative stress, mRNA expression of p53, p27 and Bax; the activity of AMP-activated protein-kinase, Forkhead transcription factor FOXO3a, Bax and caspase-3; and decreased the activity of p70S6K in MCF-7 cells. In the presence of hydrogen peroxide, the fungal β-glucans increased oxidative stress, which was associated with reduced cell viability. We showed that these β-glucans exhibited an antiproliferative effect that was associated with apoptosis, necrosis and oxidative stress. This study demonstrated for the first time that the apoptosis induced by β-glucans was mediated by AMP-activated protein-kinase and Forkhead transcription factor, FOXO3a. Our findings provide novel mechanistic insights into their antiproliferative roles, and compelling evidence that these β-glucans possess a broad range of biomodulatory properties that may prove useful in cancer treatment.


International Journal of Biological Macromolecules | 2015

Modulation of gene expression and cell cycle by botryosphaeran, a (1→3)(1→6)-β-d-glucan in human lymphocytes.

Maressa Malini; Marilesia Ferreira de Souza; Marcelo Tempesta de Oliveira; Lusânia Maria Greggi Antunes; Suely G. Figueiredo; Aneli M. Barbosa; Robert F. H. Dekker; Ilce Mara de Syllos Cólus

There is growing interest in the anticancer and immunomodulatory potential of fungal β-d-glucans. In the present study, the modulation of gene expression via RT-qPCR and cell cycle kinetics via flow cytometry were assessed in human normal and tumor (Jurkat) lymphocytes after treatment with botryosphaeran (a fungal (1→3)(1→6)-β-d-glucan) from Botryosphaeria rhodina MAMB-05. Cell cultures were treated with botryosphaeran either alone, or in combination with doxorubicin (DXR), in a post-treatment protocol. The expression of genes involved in immunomodulatory processes, apoptosis and cell cycle control, as well as β-d-glucans cell receptors were assessed. Flow cytometry analysis identified tetraploid Jurkat cells in G1 phase when treated with botryosphaeran combined with DXR. This antiproliferative effect in G1 may be associated with down-regulation of the expression of genes involved in the G1 checkpoint. The repression of the CCR5 gene following botryosphaeran treatment, either alone or in combination with DXR, in tumor lymphocytes indicates a possible affinity of this particular (1→3)(1→6)-β-d-glucan for the receptor CCR5. Therefore, botryosphaeran action appears to be involved in the repression of genes related to the G1 phase of the cell cycle and possibly in the interaction of the botryosphaeran, either alone, or in combination with DXR, with the CCR5 receptor.

Collaboration


Dive into the Robert F. H. Dekker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Neelam Khaper

Northern Ontario School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Josana Maria Messias

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Mário Antônio Alves da Cunha

Federal University of Technology - Paraná

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aneli M. Barbosa-Dekker

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar

Ellen C. Giese

Universidade Estadual de Londrina

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge