Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zuleica B. Fortes is active.

Publication


Featured researches published by Zuleica B. Fortes.


Cardiovascular Research | 2002

Intrauterine undernutrition: expression and activity of the endothelial nitric oxide synthase in male and female adult offspring

Maria do Carmo Pinho Franco; Robéria Maria M.P Arruda; Ana Paula Dantas; Elisa Mitiko Kawamoto; Zuleica B. Fortes; Cristoforo Scavone; Maria Helena C. Carvalho; Rita C. Tostes; Dorothy Nigro

OBJECTIVE Epidemiological studies suggest that intrauterine undernutrition plays an important role in the development of arterial hypertension in adulthood. In an attempt to define the mechanisms whereby blood pressure may be raised, we have hypothesized that arteries from offspring of nutritionally restricted dams exhibit abnormalities in the endothelial function and in nitric oxide synthesis. In order to investigate the existence of potential gender differences on the effects of intrauterine undernutrition, both male and female offspring of pregnant Wistar rats on normal and restricted diets were studied in adulthood. METHODS Female pregnant Wistar rats were fed either normal or 50% of the normal intake diets, during the whole gestational period. At 14 weeks of age, the rats were used for the study of vascular reactivity, eNOS and iNOS gene expression, eNOS activity and, in the case of females, estrogen levels. RESULTS Intrauterine undernutrition induced hypertension in both male and female offspring, but hypertension was more severe in male rats. Endothelium-intact aortic rings from male and female rats in the restricted diet group exhibited increased responses to norepinephrine, decreased vasodilation to acetylcholine and unaltered responses to sodium nitroprusside in comparison to aortic rings from control rats. No gender-related differences were observed in the vascular reactivity studies. Intrauterine undernutrition promoted decreased gene expression for eNOS in aorta isolated from male, but not female, offspring, reduction in eNOS activity in both male and female offspring and impairment in synthesis of estrogen in female offspring. CONCLUSION Our data show that intrauterine undernutrition: (1) induces hypertension both in the male and female offspring, hypertension being more severe in male than in female rats; (2) alters endothelium-dependent responses in aortas from the resulting offspring. The endothelial dysfunction is associated with a decrease in activity/expression of eNOS in aortas from male offspring. The mechanism involved in altered response to ACh in female offspring might be a consequence of reduction in estrogen levels leading to reduced eNOS activity.


Hypertension | 2003

ETA Receptor Blockade Decreases Vascular Superoxide Generation in DOCA-Salt Hypertension

Glaucia E. Callera; Rhian M. Touyz; Simone A. Teixeira; Marcelo N. Muscará; Maria Helena C. Carvalho; Zuleica B. Fortes; Dorothy Nigro; Ernesto L. Schiffrin; Rita C. Tostes

Abstract—Development and progression of end-organ damage in hypertension have been associated with increased oxidative stress. Superoxide anion accumulation has been reported in deoxycorticosterone acetate (DOCA)-salt hypertension, in which endothelin-1 plays an important role in cardiovascular damage. We hypothesized that blockade of ETA receptors in DOCA-salt rats would decrease oxidative stress. Both systolic blood pressure (SBP, 210±9 mm Hg; P <0.05) and vascular superoxide generation in vivo were increased in DOCA-salt (44.9±10.3% of ethidium bromide–positive nuclei; P <0.05) versus control uninephrectomized (UniNx) rats (118±3 mm Hg; 18.5±3%, respectively). In DOCA-salt rats, the ETA antagonist BMS 182874 (40 mg/kg per day PO) lowered SBP (170±4 versus UniNx, 120±3 mm Hg) and normalized superoxide production (21.7±6 versus UniNx, 11.9±7%). Vitamin E (200 mg/kg per day PO) decreased superoxide formation in DOCA-salt rats (18.8±7%) but did not alter SBP. Oxidative stress in nonstimulated circulating polymorphonuclear cells (PMNs) or in PMNs treated with zymosan, an inducer of superoxide release, was similar in DOCA-salt and UniNx groups. Superoxide formation by PMNs was unaffected by treatment with BMS 182874. Western blot analysis showed increased nitrotyrosine-containing proteins in mesenteric vessels from DOCA-salt compared with UniNX. Treatment with either BMS 182874 or vitamin E abolished the differences in vascular nitrotyrosine-containing proteins between DOCA-salt and UniNX. Maximal relaxation to acetylcholine was decreased in DOCA-salt aortas (75.8±4.2% versus UniNx, 95.4±1.9%, P <0.05). BMS 182874 treatment increased acetylcholine-induced relaxation in DOCA-salt aortas to 93.5±4.5%. These in vivo findings indicate that increased vascular superoxide production is associated with activation of the endothelin system through ETA receptors in DOCA-salt hypertension, in apparently blood pressure–independent fashion.


Brazilian Journal of Medical and Biological Research | 2003

Effects of estrogen on the vascular system

R.C. Tostes; Dorothy Nigro; Zuleica B. Fortes; M.H.C. Carvalho

The cardiovascular protective actions of estrogen are partially mediated by a direct effect on the vessel wall. Estrogen is active both on vascular smooth muscle and endothelial cells where functionally competent estrogen receptors have been identified. Estrogen administration promotes vasodilation in humans and in experimental animals, in part by stimulating prostacyclin and nitric oxide synthesis, as well as by decreasing the production of vasoconstrictor agents such as cyclooxygenase-derived products, reactive oxygen species, angiotensin II, and endothelin-1. In vitro, estrogen exerts a direct inhibitory effect on smooth muscle by activating potassium efflux and by inhibiting calcium influx. In addition, estrogen inhibits vascular smooth muscle cell proliferation. In vivo, 17beta-estradiol prevents neointimal thickening after balloon injury and also ameliorates the lesions occurring in atherosclerotic conditions. As is the case for other steroids, the effect of estrogen on the vessel wall has a rapid non-genomic component involving membrane phenomena, such as alteration of membrane ionic permeability and activation of membrane-bound enzymes, as well as the classical genomic effect involving estrogen receptor activation and gene expression.


Infection and Immunity | 2002

Inhibition of Leukocyte Rolling by Nitric Oxide during Sepsis Leads to Reduced Migration of Active Microbicidal Neutrophils

Claudia F. Benjamim; João Santana da Silva; Zuleica B. Fortes; Maria Aparecida de Oliveira; Sérgio H. Ferreira; Fernando Q. Cunha

ABSTRACT We developed two models of sepsis with different degrees of severity, sublethal and lethal sepsis, induced by cecal ligation and puncture. Lethal sepsis induced by cecal ligation and puncture (L-CLP) resulted in failure of neutrophil migration to the infection site and high mortality. Treatment of septic animals with aminoguanidine (AG), a nitric oxide (NO) synthase inhibitor, precluded the failure of neutrophil migration and protected the animals from death. However, cytokine-induced NO synthase (iNOS)-deficient (iNOS−/−) mice subjected to L-CLP did not present neutrophil migration failure, but 100% lethality occurred. iNOS−/− mice subjected to sublethal sepsis induced by cecal ligation and puncture (SL-CLP) also suffered high mortality despite the occurrence of neutrophil migration. This apparent paradox could be explained by the lack of microbicidal activity in neutrophils of iNOS−/− mice present at the infection site due to their inability to produce NO. Notably, SL- and L-CLP iNOS−/− mice showed high bacterial numbers in exudates. The inhibition of neutrophil migration by NO is due to inhibition of a neutrophil/endothelium adhesion mechanism, since a reduction in leukocyte rolling, adhesion, and emigration was observed in L-CLP wild-type mice. These responses were prevented by AG treatment and were not observed in the iNOS−/− L-CLP group. There was no significant change in L-selectin expression in neutrophils from L-CLP mice. Thus, it seems that the decrease in leukocyte rolling is due to a defect in the expression of adhesion molecules on endothelial surfaces mediated by iNOS-derived NO. In conclusion, the results indicate that despite the importance of NO in neutrophil microbicidal activity, its generation in severe sepsis reduces neutrophil migration by inhibiting leukocyte rolling and their firm adhesion to the endothelium, in effect impairing the migration of leukocytes and consequently their fundamental role in host cell defense mechanisms.


British Journal of Pharmacology | 1983

Vascular reactivity in diabetes mellitus: role of the endothelial cell.

Zuleica B. Fortes; J. Garcia Lerne; Regina Scivoletto

1 The response to vasoactive agents of microvessels in situ and large arteries in vitro was compared in normal and alloxan‐diabetic rats. 2 Noradrenaline was equally effective in evoking a constrictor response of mesenteric microvessels in normal and diabetic animals. 3 The constrictor response to a standard amount of noradrenaline in such vessels was fully antagonized by acetylcholine or papaverine, the minimum effective doses being equivalent in normal and diabetic animals. In contrast, the minimum doses of histamine or bradykinin, effective in normal animals, had to be increased about 20 fold to be active in diabetic animals. 4 Increased osmolarity of extracellular fluid caused a significant and equivalent increase in latency of the vasoconstrictor response of microvessels to noradrenaline in normal and diabetic animals. 5 Concentration‐effect curves, constructed from the response of isolated aortae to noradrenaline, were similar in normal and diabetic animals, provided the endothelium was removed. Diabetes only affected preparations in which the endothelium was left intact. In these, the median effective concentrations of noradrenaline were greatly increased in comparison with normal values. 6 Precontracted aortae from normal and diabetic animals were equally relaxed by acetylcholine and histamine, provided the endothelium was left intact. Loss of the relaxant response of the preparations in all groups of animals was observed following removal of endothelial cells. 7 It is suggested that different mechanisms may be involved in the effects of vasodilator agents on large arteries in vitro or small vessels in situ. Histamine and bradykinin which are potent permeability‐increasing factors, may antagonize the vasoconstrictor response of microvessels to noradrenaline through an action on endothelial cells with increased vascular permeability and temporary changes in composition of extracellular fluid. The reactive process of endothelial cells to permeability factors was affected by diabetes mellitus. However, the response of microvessels to acetylcholine and papaverine which are devoid of permeability‐increasing properties, was not influenced by diabetes.


Journal of Cardiovascular Pharmacology | 2002

Enhanced oxidative stress as a potential mechanism underlying the programming of hypertension in utero.

Maria do Carmo Pinho Franco; Ana Paula Dantas; Eliana H. Akamine; Elisa Mitiko Kawamoto; Zuleica B. Fortes; Cristoforo Scavone; Rita C. Tostes; Maria Helena C. Carvalho; Dorothy Nigro

Maternal undernutrition during critical periods of organ development is known to impair fetal growth and predispose to the development of adulthood diseases, such as hypertension, coronary heart disease and type II diabetes that are linked to low birth weight and are characterized by endothelial dysfunction. Increased oxidative stress, in rats submitted to intrauterine undernutrition, provides a potential explanation for the endothelial dysfunction development. The aim of this study was to determine the oxidative stress and its consequence on mesenteric arteriolar responses to vasoactive agents in offspring from diet-restricted dams. For this, female pregnant Wistar rats were fed either normal or 50% of normal intake diets, during the whole gestational period. In male offspring, arterial blood pressure was determined by the tail cuff method in anesthetized rats, mesenteric arteriolar reactivity and superoxide anion generation were studied using intravital microscopy and superoxide dismutase activity was determined in mesentery by spectrophotometric assay. Intrauterine undernutrition induced hypertension, decreased vasodilation to acetylcholine and bradykinin but did not alter the responses to sodium nitroprusside. Topical application of superoxide dismutase and superoxide dismutase mimetic manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin significantly improved the altered arteriolar responses to acetylcholine and bradykinin. A decreased superoxide dismutase activity and an increased superoxide anion concentration were observed in the offspring of diet-restricted dams. This study shows for the first time that intrauterine undernutrition enhances oxidative stress in vivo and relates this to the impaired endothelium-dependent vasodilation.


Clinical Science | 2012

Toll-like receptor 4 contributes to blood pressure regulation and vascular contraction in spontaneously hypertensive rats

Gisele Facholi Bomfim; Rosangela A. dos Santos; Maria Aparecida de Oliveira; Fernanda R.C. Giachini; Eliana H. Akamine; Rita C. Tostes; Zuleica B. Fortes; R. Clinton Webb; Maria Helena C. Carvalho

Activation of Toll-like receptors (TLR) induces gene expression of proteins involved in the immune system response. TLR4 has been implicated in the development and progression of cardiovascular diseases. Innate and adaptive immunity contribute to hypertension-associated end-organ damage, although the mechanism by which this occurs remains unclear. In the present study we hypothesize that inhibition of TLR4 decreases blood pressure and improves vascular contractility in resistance arteries from spontaneously hypertensive rats (SHR). TLR4 protein expression in mesenteric resistance arteries was higher in 15 weeks-old SHR than in same age Wistar controls or in 5 weeks-old SHR. In order to decrease activation of TLR4, 15 weeks-old SHR and Wistar rats were treated with anti-TLR4 antibody or non-specific IgG control antibody for 15 days (1µg per day, i.p.). Treatment with anti-TLR4 decreased mean arterial pressure as well as TLR4 protein expression in mesenteric resistance arteries and interleukin-6 (IL-6) serum levels from SHR when compared to SHR treated with IgG. No changes in these parameters were found in Wistar treated rats. Mesenteric resistance arteries from anti-TLR4-treated SHR exhibited decreased maximal contractile response to noradrenaline compared to IgG-treated-SHR. Inhibition of cyclooxygenase-1 (Cox) and Cox-2, enzymes related to inflammatory pathways, decreased noradrenaline responses only in mesenteric resistance arteries of SHR treated with IgG. Cox-2 expression and thromboxane A2 release were decreased in SHR treated with anti-TLR4 compared with IgG-treated-SHR. Our results suggest that TLR4 activation contributes to increased blood pressure, low grade inflammation and plays a role in the augmented vascular contractility displayed by SHR.


Peptides | 1999

Synergistic effect of angiotensin-(1-7) on bradykinin arteriolar dilation in vivo.

Maria Aparecida de Oliveira; Zuleica B. Fortes; Robson A.S. Santos; Malesh C Kosla; Maria Helena C. Carvalho

The interaction between angiotensin [Ang-(1-7)] and bradykinin (BK) was determined in the mesentery of anesthetized Wistar rats using intravital microscopy. Topical application of BK and Ang-(1-7) induced vasodilation that was abolished by the BK B2 receptor antagonist HOE-140 and the Ang-(1-7) antagonist A-779, respectively. BK (1 pmol)-induced vasodilation, but not SNP and ACh responses, was potentiated by Ang-(1-7) 10 pmol and 100 pmols. The effect of 100 pmol of Ang-(1-7) on BK-induced vasodilation was abolished by A-779, indomethacin, and L-nitroarginine methyl esther, whereas losartan was without effect. Enalaprilat treatment enhanced the BK- and Ang-(1-7)-induced vasodilation and the potentiating effect of Ang-(1-7) on BK vasodilation. The potentiation of BK-induced vasodilation by Ang-(1-7) is a receptor-mediated phenomenon dependent on cyclooxygenase-related products and NO release.


Diabetes | 1991

Direct Vital Microscopic Study of Defective Leukocyte-Endothelial Interaction in Diabetes Mellitus

Zuleica B. Fortes; Sandra P Farsky; Maria Amélia de Campos Oliveira; Joāo Garcia-Leme

The number of leukocytes rolling along the venular endothelium of the vascular network of the internal spermatic fascia was determined in nondiabetic control rats and diabetic rats with television microscopy. A marked decrease in the number of rolling cells was observed in animals rendered diabetic by the injection of alloxan 10, 30, or 180 days before relative to matching controls. Blood leukocyte counts, however, were equivalent in both control and diabetic rats. Under the influence of a local inflammatory stimulus, cells emerged into the perivascular tissue in control animals, and this was accompanied by a reduction in the number of rolling leukocytes. In diabetic rats, the number of rolling leukocytes remained unaltered, and only a few cells accumulated in the connective tissue adjacent to the vessel. Reversal of the defective leukocyte-endothelial interaction was attained by treatment of diabetic animals with insulin. Inhibitors of arachidonic acid metabolism were ineffective to improve leukocyte-endothelial interactions in diabetic animals. Control rats injected intravenously with lyophilized plasma constituents, obtained after dialysis of diabetic rat plasma with 12,000-M retention dialysis tubing, behaved as diabetic animals in that they exhibited a reduced number of leukocytes rolling along the venular endothelium. In contrast, material obtained from control rat plasma produced no effect. Heating of active samples for 1 h at 56°C degrees C resulted in the complete loss of the inhibitory effect. We conclude that a substance or substances present in diabetic plasma induce a defective leukocyte-endothelial interaction that further impairs resistance to infection.


Cardiovascular Research | 2003

NADPH oxidase and enhanced superoxide generation in intrauterine undernourished rats: involvement of the renin–angiotensin system

Maria do Carmo Pinho Franco; Eliana H. Akamine; Giovana Seno Di Marco; Dulce Elena Casarini; Zuleica B. Fortes; Rita C. Tostes; Maria Helena C. Carvalho; Dorothy Nigro

OBJECTIVE We previously reported that intrauterine undernutrition increased the oxidative stress by decreasing superoxide dismutase activity. In the present study, we tested whether NADPH oxidase, xanthine oxidase, cyclooxygenase or nitric oxide synthase are responsible for the increased O(2)(-) generation observed in rats submitted to intrauterine undernutrition. In addition, we investigated the effect of angiotensin II (ANG II) on O(2)(-) production via activation of NADPH oxidase. METHODS Female pregnant Wistar rats were fed either normal or 50% of the normal intake diets, during the whole gestational period. At 16 weeks of age, the rats were used for the study of intravital fluorescence microscopy; microvascular reactivity, local ANG II concentration and AT(1), p22(phox) and gp91(phox) gene expression. In this study only the male offspring was used. RESULTS Treatment of mesenteric arterioles with the xanthine oxidase inhibitor oxypurinol, the nitric oxide synthase inhibitor L-NAME or the cyclooxygenase inhibitor diclofenac did not significantly change superoxide production. Thus, these vascular sources of superoxide were not responsible for the increased superoxide concentration. In contrast, treatment with the NADPH oxidase inhibitor apocynin significantly decreased superoxide generation and improved vascular function. On the other hand, intrauterine undernutrition did not alter the gene expression for p22(phox) and gp91(phox). The fact that the local ANG II concentration was increased and the attenuation of oxidative stress by blocking AT(1) receptor with losartan, led us to suggest that ANG II induces O(2)(-) generation in intrauterine undernourished rats. CONCLUSION Our study shows that NADPH oxidase inhibition attenuated superoxide anion generation and ameliorated vascular function in rats submitted to intrauterine undernutrition. Although it is not clear which mechanisms are responsible for the increase in NADPH oxidase activity, a role for ANG II-mediated superoxide production via activation of NADPH oxidase is suggested.

Collaboration


Dive into the Zuleica B. Fortes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dorothy Nigro

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Rita C. Tostes

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R.C. Tostes

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge