Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Gauvin is active.

Publication


Featured researches published by Robert Gauvin.


Materials | 2010

Collagen-Based Biomaterials for Tissue Engineering Applications

Rémi Parenteau-Bareil; Robert Gauvin; François Berthod

Collagen is the most widely distributed class of proteins in the human body. The use of collagen-based biomaterials in the field of tissue engineering applications has been intensively growing over the past decades. Multiple cross-linking methods were investigated and different combinations with other biopolymers were explored in order to improve tissue function. Collagen possesses a major advantage in being biodegradable, biocompatible, easily available and highly versatile. However, since collagen is a protein, it remains difficult to sterilize without alterations to its structure. This review presents a comprehensive overview of the various applications of collagen-based biomaterials developed for tissue engineering, aimed at providing a functional material for use in regenerative medicine from the laboratory bench to the patient bedside.


Biomaterials | 2012

Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography.

Robert Gauvin; Ying Chieh Chen; Jin Woo Lee; Pranav Soman; Pinar Zorlutuna; Jason W. Nichol; Hojae Bae; Shaochen Chen; Ali Khademhosseini

The success of tissue engineering will rely on the ability to generate complex, cell seeded three-dimensional (3D) structures. Therefore, methods that can be used to precisely engineer the architecture and topography of scaffolding materials will represent a critical aspect of functional tissue engineering. Previous approaches for 3D scaffold fabrication based on top-down and process driven methods are often not adequate to produce complex structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. The proposed projection stereolithography (PSL) platform can be used to design intricate 3D tissue scaffolds that can be engineered to mimic the microarchitecture of tissues, based on computer aided design (CAD). The PSL system was developed, programmed and optimized to fabricate 3D scaffolds using gelatin methacrylate (GelMA). Variation of the structure and prepolymer concentration enabled tailoring the mechanical properties of the scaffolds. A dynamic cell seeding method was utilized to improve the coverage of the scaffold throughout its thickness. The results demonstrated that the interconnectivity of pores allowed for uniform human umbilical vein endothelial cells (HUVECs) distribution and proliferation in the scaffolds, leading to high cell density and confluency at the end of the culture period. Moreover, immunohistochemistry results showed that cells seeded on the scaffold maintained their endothelial phenotype, demonstrating the biological functionality of the microfabricated GelMA scaffolds.


Science Translational Medicine | 2012

Building Vascular Networks

Hojae Bae; Amey S. Puranik; Robert Gauvin; Faramarz Edalat; Brenda Carrillo-Conde; Nicholas A. Peppas; Ali Khademhosseini

Advances in generating vascular networks in biomaterials may aid translation of tissue engineering technologies. Only a few engineered tissues—skin, cartilage, bladder—have achieved clinical success, and biomaterials designed to replace more complex organs are still far from commercial availability. This gap exists in part because biomaterials lack a vascular network to transfer the oxygen and nutrients necessary for survival and integration after transplantation. Thus, generation of a functional vasculature is essential to the clinical success of engineered tissue constructs and remains a key challenge for regenerative medicine. In this Perspective, we discuss recent advances in vascularization of biomaterials through the use of biochemical modification, exogenous cells, or microengineering technology.


Integrative Biology | 2009

Surface topography induces 3D self-orientation of cells and extracellular matrix resulting in improved tissue function

Maxime D. Guillemette; Bo Cui; Emmanuel Roy; Robert Gauvin; Claude J. Giasson; Mandy B. Esch; Patrick Carrier; Alexandre Deschambeault; Michel M. Dumoulin; Mehmet Toner; Lucie Germain; Teodor Veres; François A. Auger

The organization of cells and extracellular matrix (ECM) in native tissues plays a crucial role in their functionality. However, in tissue engineering, cells and ECM are randomly distributed within a scaffold. Thus, the production of engineered-tissue with complex 3D organization remains a challenge. In the present study, we used contact guidance to control the interactions between the material topography, the cells and the ECM for three different tissues, namely vascular media, corneal stroma and dermal tissue. Using a specific surface topography on an elastomeric material, we observed the orientation of a first cell layer along the patterns in the material. Orientation of the first cell layer translates into a physical cue that induces the second cell layer to follow a physiologically consistent orientation mimicking the structure of the native tissue. Furthermore, secreted ECM followed cell orientation in every layer, resulting in an oriented self-assembled tissue sheet. These self-assembled tissue sheets were then used to create 3 different structured engineered-tissue: cornea, vascular media and dermis. We showed that functionality of such structured engineered-tissue was increased when compared to the same non-structured tissue. Dermal tissues were used as a negative control in response to surface topography since native dermal fibroblasts are not preferentially oriented in vivo. Non-structured surfaces were also used to produce randomly oriented tissue sheets to evaluate the impact of tissue orientation on functional output. This novel approach for the production of more complex 3D tissues would be useful for clinical purposes and for in vitro physiological tissue model to better understand long standing questions in biology.


European Journal of Pharmaceutical Sciences | 2013

In vitro, in vivo and ex vivo models for studying particle deposition and drug absorption of inhaled pharmaceuticals

Kamrun Nahar; Nilesh Gupta; Robert Gauvin; Shahriar Absar; Brijeshkumar Patel; Vivek Gupta; Ali Khademhosseini; Fakhrul Ahsan

Delivery of therapeutic agents via the pulmonary route has gained significant attention over the past few decades because this route of administration offers multiple advantages over traditional routes that include localized action, non-invasive nature and favorable lung-to-plasma ratio. However, assessment of post administration behavior of inhaled pharmaceuticals-such as deposition of particles over the respiratory airways, interaction with the respiratory fluid and movement across the air-blood barrier-is challenging because the lung is a very complex organs that is composed of airways with thousands of bifurcations with variable diameters. Thus, much effort has been put forward to develop models that mimic human lungs and allow evaluation of various pharmaceutical and physiological factors that influence the deposition and absorption profiles of inhaled formulations. In this review, we sought to discuss in vitro, in vivo and ex vivo models that have been extensively used to study the behaviors of airborne particles in the lungs and determine the absorption of drugs after pulmonary administration. We have provided a summary of lung cast models, cascade impactors, noninvasive imaging, intact animals, cell culture and isolated perfused lung models as tools to evaluate the distribution and absorption of inhaled particles. We have also outlined the limitations of currently used models and proposed future studies to enhance the reproducibility of these models.


Investigative Ophthalmology & Visual Science | 2009

Impact of Cell Source on Human Cornea Reconstructed by Tissue Engineering

Patrick Carrier; Alexandre Deschambeault; Caroline Audet; M. Talbot; Robert Gauvin; Claude J. Giasson; François A. Auger; Sylvain L. Guérin; Lucie Germain

PURPOSE To investigate the effect of the tissue origin of stromal fibroblasts and epithelial cells on reconstructed corneas in vitro. METHODS Four types of constructs were produced by the self-assembly approach using the following combinations of human cells: corneal fibroblasts/corneal epithelial cells, corneal fibroblasts/skin epithelial cells, skin fibroblasts/corneal epithelial cells, skin fibroblasts/skin epithelial cells. Fibroblasts were cultured with ascorbic acid to produce stromal sheets on which epithelial cells were cultured. After 2 weeks at the air-liquid interface, the reconstructed tissues were photographed, absorption spectra were measured, and tissues were fixed for histologic analysis. Cytokine expression in corneal- or skin-fibroblast-conditioned media was determined with the use of protein array membranes. The effect of culturing reconstructed tissues with conditioned media, or media supplemented with a cytokine secreted mainly by corneal fibroblasts, was determined. RESULTS The tissue source from which epithelial and mesenchymal cells were isolated had a great impact on the macroscopic and histologic features (epithelium thickness and differentiation) and the functional properties (transparency) of the reconstructed tissues. The reconstructed cornea had ultraviolet-absorption characteristics resembling those of native human cornea. The regulation of epithelial differentiation and thickness was mesenchyme-dependent and mediated by diffusible factors. IL-6, which is secreted in greater amounts by corneal fibroblasts than skin fibroblasts, decreased the expression of the differentiation marker DLK in the reconstructed epidermis. CONCLUSIONS The tissue origin of fibroblasts and epithelial cells plays a significant role in the properties of the reconstructed tissues. These human models are promising tools for gaining a thorough understanding of epithelial-stromal interactions and regulation of epithelia homeostasis.


Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology | 2012

Hydrogels and microtechnologies for engineering the cellular microenvironment.

Robert Gauvin; Rémi Parenteau-Bareil; Mehmet R. Dokmeci; W. David Merryman; Ali Khademhosseini

Hydrogels represent a class of materials suitable for numerous biomedical applications such as tissue engineering and drug delivery. Hydrogels are by definition capable of absorbing large amount of fluid, making them adequate for cell seeding and encapsulation as well as for implantation because of their biocompatibility and excellent diffusion properties. They also possess other desirable properties for fundamental research as they have the ability to mimic the basic three-dimensional (3D) biological, chemical, and mechanical properties of native tissues. Furthermore, their biological interactions with cells can be modified through the numerous side groups of the polymeric chains. Thus, the biological, chemical, and mechanical properties, as well as the degradation kinetics of hydrogels can be tailored depending on the application. In addition, their fabrication process can be combined with microtechnologies to enable precise control of cell-scale features such as surface topography and the presence of adhesion motifs on the hydrogel material. This ability to control the microscale structure of hydrogels has been used to engineer tissue models and to study cell behavior mechanisms in vitro. New approaches such as bottom-up and directed assembly of microscale hydrogels (microgels) are currently emerging as powerful methods to enable the fabrication of 3D constructs replicating the microenvironment found in vivo.


Acta Biomaterialia | 2011

Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis

Rémi Parenteau-Bareil; Robert Gauvin; Simon Cliche; C. Gariépy; Lucie Germain; François Berthod

Combining bovine collagen with chitosan followed by freeze-drying has been shown to produce porous scaffolds suitable for skin and connective tissue engineering applications. In this study collagen extracted from porcine and avian skin was compared with bovine collagen for the production of tissue engineered scaffolds. A similar purity of the collagen extracts was shown by electrophoresis, confirming the reliability of the extraction process. Collagen was solubilized, cross-linked by adding chitosan to the solution and freeze-dried to generate a porous structure suitable for tissue engineering applications. Scaffold porosity and pore morphology were shown to be source dependant, with bovine collagen and avian collagen resulting into the smallest and largest pores, respectively. Scaffolds were seeded with dermal fibroblasts and cultured for 35 days to evaluate the suitability of the different collagen-chitosan scaffolds for long-term tissue engineered dermal substitute maturation in vitro. Cell proliferation and scaffold biocompatibility were found to be similar for all the collagen-chitosan scaffolds, demonstrating their capability to support long-term cell adhesion and growth. The scaffolds contents was assessed by immunohistochemistry and showed increased deposition of extracellular matrix by the cells as a function of time. These results correlate with measurements of the mechanical properties of the scaffolds, since both the ultimate tensile strength and tensile modulus of the cell seeded scaffolds had increased by the end of the culture period. This experiment demonstrates that porcine and avian collagen could be used as an alternative to bovine collagen in the production of collagen-chitosan scaffolding materials.


Acta Biomaterialia | 2011

Dynamic mechanical stimulations induce anisotropy and improve the tensile properties of engineered tissues produced without exogenous scaffolding.

Robert Gauvin; Rémi Parenteau-Bareil; Danielle Larouche; Hugo Marcoux; Francis Bisson; Adrien Bonnet; François A. Auger; Stéphane Bolduc; Lucie Germain

Mechanical strength and the production of extracellular matrix (ECM) are essential characteristics for engineered tissues designed to repair and replace connective tissues that are subject to stress and strain. In this study, dynamic mechanical stimulation (DMS) was investigated as a method to improve the mechanical properties of engineered tissues produced without the use of an exogenous scaffold, referred to as the self-assembly approach. This method, based exclusively on the use of human cells without any exogenous scaffolding, allows for the production of a tissue sheet comprised of cells and ECM components synthesized by dermal fibroblasts in vitro. A bioreactor chamber was designed to apply cyclic strain to engineered tissues in order to determine if dynamic culture had an impact on their mechanical properties and ECM organization. Fibroblasts were cultured in the presence of ascorbic acid for 35 days to promote ECM production and allow the formation of a tissue sheet. This sheet was grown on a custom-built anchoring system allowing for easy manipulation and fixation of the tissue in the bioreactor. Following the 35 day period, tissues were maintained for 3 days in static culture (SC), or subjected either to a static mechanical stimulation of 10% strain, or a dynamic DMS with a duty cycle of 10% uniaxial cyclic strain at 1Hz. ECM was characterized by histology, immunofluorescence labeling and Western blotting. Both static and dynamic mechanical stimulation induced the alignment of assessed cytoskeletal proteins and ECM components parallel to the axis of applied strain and increased the ECM content of the tissues compared to SC. Measurement of the tensile mechanical properties revealed that mechanical stimulation significantly increases both the ultimate tensile strength and tensile modulus of the engineered tissues when compared to the non-stimulated control. Moreover, we demonstrated that cyclic strain significantly increases these parameters when compared to a static-loading stimulation and that mechanical stimulation contributes to the establishment of anisotropy in the structural and mechanical properties of self-assembled tissue sheets.


Tissue Engineering Part A | 2010

Tissue-engineered vascular adventitia with vasa vasorum improves graft integration and vascularization through inosculation.

Maxime D. Guillemette; Robert Gauvin; Cindy Perron; Raymond Labbé; Lucie Germain; François A. Auger

Tissue-engineered blood vessel is one of the most promising living substitutes for coronary and peripheral artery bypass graft surgery. However, one of the main limitations in tissue engineering is vascularization of the construct before implantation. Such a vascularization could play an important role in graft perfusion and host integration of tissue-engineered vascular adventitia. Using our self-assembly approach, we developed a method to vascularize tissue-engineered blood vessel constructs by coculturing endothelial cells in a fibroblast-laden tissue sheet. After subcutaneous implantation, enhancement of graft integration within the surrounding environment was noted after 48 h and an important improvement in blood circulation of the grafted tissue at 1 week postimplantation. The distinctive branching structure of end arteries characterizing the in vivo adventitial vasa vasorum has also been observed in long-term postimplantation follow-up. After a 90-day implantation period, hybrid vessels containing human and mouse endothelial cells were still perfused. Characterization of the mechanical properties of both control and vascularized adventitia demonstrated that the ultimate tensile strength, modulus, and failure strain were in the same order of magnitude of a pig coronary artery. The addition of a vasa vasorum to the tissue-engineered adventitia did not influence the burst pressure of these constructs. Hence, the present results indicate a promising answer to the many challenges associated with the in vitro vascularization and in vivo integration of many different tissue-engineered substitutes.

Collaboration


Dive into the Robert Gauvin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brijeshkumar Patel

Texas Tech University Health Sciences Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge