Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert H. Weisberg is active.

Publication


Featured researches published by Robert H. Weisberg.


Journal of Geophysical Research | 2006

Red tides in the Gulf of Mexico: Where, when, and why?

John J. Walsh; J. K. Jolliff; Brian P. Darrow; Jason M. Lenes; S. P. Milroy; Andrew Remsen; Dwight A. Dieterle; Kendall L. Carder; F.R. Chen; Gabriel A. Vargo; Robert H. Weisberg; Kent A. Fanning; Frank E. Muller-Karger; Eugene A. Shinn; Karen A. Steidinger; Cynthia A. Heil; C.R. Tomas; J. S. Prospero; Thomas N. Lee; Gary J. Kirkpatrick; Terry E. Whitledge; Dean A. Stockwell; Tracy A. Villareal; Ann E. Jochens; P. S. Bontempi

[1] Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus-rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron-rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen-poor sea water. They and the co-occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near-bottom seed populations to CDOM-rich surface waters of coastal regions, light-inhibition of the small red tide of ~1 ug chl l(-1) of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self-shaded red tides of ~10 ug chl l(-1). The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P-sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication.


Geophysical Research Letters | 1997

A Western Pacific Oscillator Paradigm for the El Niño-Southern Oscillation

Robert H. Weisberg; Chunzai Wang

A data-based hypothesis is presented on the mechanism of the El Nino-Southern Oscillation (ENSO), a major determinant of interannual global climate variability. The hypothesis emphasizes the importance of off-equator sea surface temperature and sea level pressure variations west of the dateline for initiating equatorial easterly winds over the far western Pacific. These winds compete with westerly winds over the equatorial central Pacific enabling the coupled ocean-atmosphere system to oscillate. Consistent with this hypothesis, an analogical oscillator model is constructed that produces ENSO-like oscillations. The proposed mechanism differs from the delayed oscillator paradigm in that wave reflection at the western boundary is not a necessary condition for the coupled ocean-atmosphere system to oscillate.


Journal of Atmospheric and Oceanic Technology | 2007

Rectification of the Bias in the Wavelet Power Spectrum

Yonggang Liu; X. San Liang; Robert H. Weisberg

This paper addresses a bias problem in the estimate of wavelet power spectra for atmospheric and oceanic datasets. For a time series comprised of sine waves with the same amplitude at different frequencies the conventionally adopted wavelet method does not produce a spectrum with identical peaks, in contrast to a Fourier analysis. The wavelet power spectrum in this definition, that is, the transform coefficient squared (to within a constant factor), is equivalent to the integration of energy (in physical space) over the influence period (time scale) the series spans. Thus, a physically consistent definition of energy for the wavelet power spectrum should be the transform coefficient squared divided by the scale it associates. Such adjusted wavelet power spectrum results in a substantial improvement in the spectral estimate, allowing for a comparison of the spectral peaks across scales. The improvement is validated with an artificial time series and a real coastal sea level record. Also examined is the previous example of the wavelet analysis of the Nino-3 SST data.


Journal of Geophysical Research | 1995

Tropical instability wave kinematics: Observations from the Tropical Instability Wave Experiment

L. Qiao; Robert H. Weisberg

Ocean velocity data from an array of subsurface moorings deployed from May 1990 to June 1991 during the Tropical Instability Wave Experiment are used to study the energetics of planetary waves in the vicinity of the equator at 1408W. Such waves, observed from August to December 1990, were initiated by barotropic instability arising primarily from the cyclonic shear region of the South Equatorial Current and Equatorial Undercurrent just north of the equator. Subsequently, local barotropic production continued to maintain and modulate these tropical instability waves through a combination of cyclonic shear and meridional velocity component divergence just north of the equator. The end of the wave season coincided with the propagation past the array of a large intraseasonal Kelvin wave.


Journal of Geophysical Research | 1999

Western Pacific interannual variability associated with the El Niño‐Southern Oscillation

Chunzai Wang; Robert H. Weisberg; Jyotika I. Virmani

Observations of sea surface temperature (SST), sea level pressure (SLP), surface wind, and outgoing longwave radiation (OLR) show that the El Nino-Southern Oscillation (ENSO) displays western Pacific anomaly patterns in addition to eastern Pacific anomaly patterns. During the warm phase of ENSO, warm SST and low SLP anomalies in the equatorial eastern Pacific and low OLR anomalies in the equatorial central Pacific are accompanied by cold SST and high SLP anomalies in the off-equatorial western Pacific and high OLR anomalies in the off-equatorial far western Pacific. Also, while the zonal wind anomalies over the equatorial central Pacific are westerly, those over the equatorial far western Pacific are easterly. The nearly out-of-phase behavior between the eastern and western tropical Pacific is also observed during the cold phase of ENSO, but with anomalies of opposite sign. These western Pacific interannual anomaly patterns are robust features of ENSO, independent of data sets. It is argued that equatorial easterly (westerly) wind anomalies over the far western Pacific during the warm (cold) phase of ENSO are initiated by off-equatorial western Pacific cold (warm) SST anomalies, and that these winds are important for the evolution of ENSO. An atmosphere model is employed to demonstrate that small off-equatorial western Pacific cold (warm) SST anomalies (compared to those in the east) are sufficient to produce equatorial easterly (westerly) wind anomalies as observed over the far western Pacific. The coupled ocean-atmosphere model of Zebiak and Cane is then modified to investigate the evolution of the western Pacific interannual anomaly patterns in a coupled ocean-atmosphere system, by including a meridional structure to the subsurface temperature parameterization in the western Pacific. The modified model produces both western and eastern Pacific interannual anomaly patterns.


Estuaries and Coasts | 2006

Hurricane storm surge simulations for tampa bay

Robert H. Weisberg; Lianyuan Zheng

Using a high resolution, three-dimensional, primitive equation, finite volume coastal ocean model with flooding and drying capabilities, supported by a merged bathymetric-topographic data set and driven by prototypical hurricane winds and atmospheric pressure fields, we investigated the storm surge responses for the Tampa Bay, Florida, vicinity and their sensitivities to point of landfall, direction and speed of approach, and intensity. All of these factors were found to be important. Flooding potential by wind stress and atmospheric pressure induced surge is significant for a category 2 hurricane and catastrophic for a category 4 hurricane. Tide, river, and wave effects are additive, making the potential for flood-induced damage even greater. Since storm surge sets up as a slope to the sea surface, the highest surge tends to occur over the upper reaches of the bay, Old Tampa Bay and Hillsborough Bay in particular. For point of landfall sensitivity, the worst case is when the hurricane center is positioned north of the bay mouth such that the maximum winds associated with the eye wall are at the bay mouth. Northerly (southerly) approaching storms yield larger (smaller) surges since the winds initially set up (set down) water level. As a hybrid between the landfall and direction sensitivity experiments, a storm transiting up the bay axis from southwest to northeast yields the smallest surge, debunking a misconception that this is the worst Tampa Bay flooding case. Hurricanes with slow (fast) translation speeds yield larger (smaller) surges within Tampa Bay due to the time required to redistribute mass.


Continental Shelf Research | 2003

West Florida shelf circulation and temperature budget for the 1999 spring transition

Ruoying He; Robert H. Weisberg

Mid-latitude continental shelves undergo a fall transition as the net heat flux changes from warming to cooling. Using in situ data and a numerical model we investigate the circulation on the west Florida shelf (WFS) for the fall transition of 1998. The model is a regional adaptation of the primitive equation, Princeton Ocean Model forced by NCEP reanalysis wind, air pressure, and heat flux fields, plus river inflows. After comparison with observations the model is used to draw inferences on the seasonal and synoptic scale features of the shelf circulation. By running twin experiments, one without and the other with an idealized Loop Current (LC), we explore the relative importance of local versus deep-ocean forcing. We find that local forcing largely controls the inner-shelf circulation, including changes from the Florida Panhandle in the north to regions farther south. The effects of the LC in fall 1998 are to reinforce the mid-shelf currents and to increase the across-shelf transports in the bottom Ekman layer, thereby accentuating the shoreward transport of cold, nutrient rich water of deep-ocean origin. A three-dimensional analysis of the temperature budget reveals that surface heat flux largely controls both the seasonal and synoptic scale temperature variations. Surface cooling leads to convective mixing that rapidly alters temperature gradients. One interesting consequence is that upwelling can result in near-shore warming as warmer offshore waters are advected landward. The temperature balances on the shelf are complex and fully three-dimensional.


Journal of Climate | 2000

The 1997–98 El Niño Evolution Relative to Previous El Niño Events

Chunzai Wang; Robert H. Weisberg

Abstract The evolution of the 1997–98 El Nino is described using NCEP SST and OLR data, NCEP–NCAR reanalysis sea level pressure (SLP) fields, and The Florida State University surface wind data. From November 1996 to January 1997, the eastern Pacific is characterized by equatorial cold SST and high SLP anomalies, while the western Pacific is marked by off-equatorial warm SST anomalies and off-equatorial anomalous cyclones. Corresponding to this distribution are high OLR anomalies in the equatorial central Pacific and low OLR anomalies in the off-equatorial far western Pacific. The off-equatorial anomalous cyclones in the western Pacific are associated with a switch in the equatorial wind anomalies over the western Pacific from easterly to westerly. These equatorial westerly anomalies then appear to initiate early SST warmings around the date line in January/February 1997 and around the far eastern Pacific in March 1997. Subsequently, both the westerly wind and warm SST anomalies, along with the low OLR ano...


Journal of Physical Oceanography | 1988

Instability Waves in the Equatorial Atlantic Ocean

Robert H. Weisberg; Thomas J. Weingartner

Abstract Evidence is presented for the generation of planetary waves by barotropic instability within the cyclonic shear region of the Atlantic Oceans South Equatorial Current (SEC). Immediately following the springtime intensification of the southeast trade wind, which accelerates the SEC westward, a packet of waves with central periodicity of around 25 days is observed lasting for about three cycles. Independent wavenumber analyses on 1983 and 1984 data give newly identical zonal wavelengths and phase speed estimates of around 1100 km and −50 cm s−1. The waves are anisotropic and spatially inhomogeneous with generation confined primarily to the mixed layer. An energetics analysis using 1983 data centered upon the equator at 28°W shows a rapid increase in total perturbation energy (TPE) reaching values of 2000 erg cm−3 within two weeks. The subsequent decrease in TPE at this location is due primarily to meridional pressure-work divergence. Baroclinic instability is negligible because both the meridional...


Journal of Geophysical Research | 2001

West Florida shelf response to local wind forcing: April 1998

Robert H. Weisberg; Zhenjiang Li; Frank E. Muller-Karger

We compare west Florida shelf velocity and sea level data with a model simulation for April 1998. Responses for three upwelling and three downwelling favorable wind events are documented. Along-shelf jets accompanied by oppositely directed upper and lower layer across-shelf flows (with connecting vertical velocity) comprise the fully three-dimensional inner shelf responses, which are sensitive to stratification. With an initial density field representative of April 1998 the model simulates velocity and sea level variations in general agreement with the observations, whereas substantial mismatches occur without stratification. Despite the winds being the primary motive agent for the inner shelf the stratification dependence requires that model density fields be maintained through a combination of adequate initial conditions; surface, offshore, and land-derived buoyancy inputs; and data assimilation. Dynamical analyses define the inner shelf as the region where the surface and bottom boundary layers are important in the momentum balance. Kinematically, this is where surface Ekman layer divergence, fed by the bottom Ekman layer convergence, or conversely, sets up the across-shelf pressure gradient. Stratification causes a response asymmetry wherein the offshore scale and magnitude of the upwelling responses are larger than those for the downwelling responses. This asymmetry is attributed to thermal wind effects across the bottom Ekman layer. Buoyancy torque by isopycnals bending into the bottom adds constructively (destructively) with planetary vorticity tilting under upwelling (downwelling) favorable winds, and this may have important implications for nutrients and other material property distributions on the shelf.

Collaboration


Dive into the Robert H. Weisberg's collaboration.

Top Co-Authors

Avatar

Yonggang Liu

University of South Florida St. Petersburg

View shared research outputs
Top Co-Authors

Avatar

Lianyuan Zheng

University of South Florida St. Petersburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruoying He

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Chuanmin Hu

University of South Florida St. Petersburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John J. Walsh

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Jason M. Lenes

University of South Florida St. Petersburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge