Robert J. Burgman
University of Miami
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert J. Burgman.
Bulletin of the American Meteorological Society | 2014
Gerald A. Meehl; Lisa M. Goddard; G. J. Boer; Robert J. Burgman; Grant Branstator; Christophe Cassou; Susanna Corti; Gokhan Danabasoglu; Francisco J. Doblas-Reyes; Ed Hawkins; Alicia Karspeck; Masahide Kimoto; Arun Kumar; Daniela Matei; Juliette Mignot; Rym Msadek; Antonio Navarra; Holger Pohlmann; Michele M. Rienecker; T. Rosati; Edwin K. Schneider; Doug Smith; Rowan Sutton; Haiyan Teng; Geert Jan van Oldenborgh; Gabriel A. Vecchi; Stephen Yeager
This paper provides an update on research in the relatively new and fast-moving field of decadal climate prediction, and addresses the use of decadal climate predictions not only for potential users of such information but also for improving our understanding of processes in the climate system. External forcing influences the predictions throughout, but their contributions to predictive skill become dominant after most of the improved skill from initialization with observations vanishes after about 6–9 years. Recent multimodel results suggest that there is relatively more decadal predictive skill in the North Atlantic, western Pacific, and Indian Oceans than in other regions of the world oceans. Aspects of decadal variability of SSTs, like the mid-1970s shift in the Pacific, the mid-1990s shift in the northern North Atlantic and western Pacific, and the early-2000s hiatus, are better represented in initialized hindcasts compared to uninitialized simulations. There is evidence of higher skill in initialize...
Science | 2009
Amy C. Clement; Robert J. Burgman; Joel R. Norris
Positve Feedback The uncertain effect of feedback between climate and clouds is one of the largest obstacles to producing more confident projections of global climate. Clement et al. (p. 460) examined how clouds, sea surface temperature, and large-scale atmospheric circulation vary in the Northeast Pacific region. Change in cloud coverage was the primary cause of sea surface temperature variations, and clouds provided a positive feedback to temperature variations. Furthermore, regional atmospheric circulation patterns were linked to patterns of cloudiness. One model produced realistic covariability between cloud cover, sea surface temperatures, and atmospheric circulation for the 20th century. Decreased low-level cloud cover in the Northeast Pacific region amplifies increases in sea surface temperatures. Feedbacks involving low-level clouds remain a primary cause of uncertainty in global climate model projections. This issue was addressed by examining changes in low-level clouds over the Northeast Pacific in observations and climate models. Decadal fluctuations were identified in multiple, independent cloud data sets, and changes in cloud cover appeared to be linked to changes in both local temperature structure and large-scale circulation. This observational analysis further indicated that clouds act as a positive feedback in this region on decadal time scales. The observed relationships between cloud cover and regional meteorological conditions provide a more complete way of testing the realism of the cloud simulation in current-generation climate models. The only model that passed this test simulated a reduction in cloud cover over much of the Pacific when greenhouse gases were increased, providing modeling evidence for a positive low-level cloud feedback.
Climate Dynamics | 2013
Lisa M. Goddard; Arun Kumar; Amy Solomon; D. Smith; G. J. Boer; Paula Leticia Manuela Gonzalez; Viatcheslav V. Kharin; William J. Merryfield; Clara Deser; Simon J. Mason; Ben P. Kirtman; Rym Msadek; Rowan Sutton; Ed Hawkins; Thomas E. Fricker; Gabi Hegerl; Christopher A. T. Ferro; David B. Stephenson; Gerald A. Meehl; Timothy N. Stockdale; Robert J. Burgman; Arthur M. Greene; Yochanan Kushnir; Matthew Newman; James A. Carton; Ichiro Fukumori; Thomas L. Delworth
Decadal predictions have a high profile in the climate science community and beyond, yet very little is known about their skill. Nor is there any agreed protocol for estimating their skill. This paper proposes a sound and coordinated framework for verification of decadal hindcast experiments. The framework is illustrated for decadal hindcasts tailored to meet the requirements and specifications of CMIP5 (Coupled Model Intercomparison Project phase 5). The chosen metrics address key questions about the information content in initialized decadal hindcasts. These questions are: (1) Do the initial conditions in the hindcasts lead to more accurate predictions of the climate, compared to un-initialized climate change projections? and (2) Is the prediction model’s ensemble spread an appropriate representation of forecast uncertainty on average? The first question is addressed through deterministic metrics that compare the initialized and uninitialized hindcasts. The second question is addressed through a probabilistic metric applied to the initialized hindcasts and comparing different ways to ascribe forecast uncertainty. Verification is advocated at smoothed regional scales that can illuminate broad areas of predictability, as well as at the grid scale, since many users of the decadal prediction experiments who feed the climate data into applications or decision models will use the data at grid scale, or downscale it to even higher resolution. An overall statement on skill of CMIP5 decadal hindcasts is not the aim of this paper. The results presented are only illustrative of the framework, which would enable such studies. However, broad conclusions that are beginning to emerge from the CMIP5 results include (1) Most predictability at the interannual-to-decadal scale, relative to climatological averages, comes from external forcing, particularly for temperature; (2) though moderate, additional skill is added by the initial conditions over what is imparted by external forcing alone; however, the impact of initialization may result in overall worse predictions in some regions than provided by uninitialized climate change projections; (3) limited hindcast records and the dearth of climate-quality observational data impede our ability to quantify expected skill as well as model biases; and (4) as is common to seasonal-to-interannual model predictions, the spread of the ensemble members is not necessarily a good representation of forecast uncertainty. The authors recommend that this framework be adopted to serve as a starting point to compare prediction quality across prediction systems. The framework can provide a baseline against which future improvements can be quantified. The framework also provides guidance on the use of these model predictions, which differ in fundamental ways from the climate change projections that much of the community has become familiar with, including adjustment of mean and conditional biases, and consideration of how to best approach forecast uncertainty.
Journal of Climate | 2006
Paul S. Schopf; Robert J. Burgman
Abstract A simple mechanism is offered that accounts for a change in the long-term (decadal scale) mean of ocean temperatures as the El Nino–Southern Oscillation (ENSO) amplitude changes. It is intended as an illustration of a kinematic effect of oscillating a nonlinear temperature profile with finite-amplitude excursions that will cause the Eulerian time mean temperature to rise (fall) where the curvature of the temperature is positive (negative) as the amplitude of the oscillations increases. This mechanism is found to be able to mimic observed changes in the mean sea surface temperatures in the Pacific between the 1920s, 1960s, and 1990s due to the changing ENSO amplitude. The effects alter both the calculated mean surface temperatures and the time mean temperatures at depth. It also results in a skewness of the temperature distribution that shares many properties with the observed SST. In this model, the time-local gradients of temperature never change if referenced to a single isotherm (i.e., the Lag...
Journal of Climate | 2008
Robert J. Burgman; Paul S. Schopf; Ben P. Kirtman
Abstract Decadal variations in the amplitude of El Nino and the Southern Oscillation have been the subject of great interest in the literature for the past decade. One theory suggests that ENSO is best described as a stable system driven by linear dynamics and that stochastic atmospheric forcing is responsible for the development and modulation of ENSO on interannual as well as decadal time scales. Another theory suggests that ENSO is driven by strong nonlinear coupled feedbacks between the ocean and atmosphere and low frequency changes in ENSO amplitude are driven by decadal changes in the tropical Pacific mean state. Unfortunately, the observed record is too short to collect reliable statistics for such low frequency behavior. A hybrid coupled model composed of a simple statistical atmosphere coupled to the Poseidon isopycnal ocean model has been developed for the study of ENSO decadal variability. The model simulates realistic ENSO variability on interannual and decadal time scales with negligible clim...
Journal of Climate | 2015
Robert J. Burgman; Youkyoung Jang
AbstractIdealized atmospheric general circulation model (AGCM) experiments by the U.S. Climate Variability and Predictability Program (CLIVAR) Drought Working Group were used in order to study the influence of natural modes of sea surface temperature (SST) variability in the Pacific on drought in the contiguous United States. The current study expands on previous results by examining the atmospheric response of three AGCMs to three different patterns of the idealized Pacific SST anomalies that operate on different time scales: low-frequency (decadal), high-frequency (interannual), and a pan-Pacific pattern that retains characteristics of interannual and decadal variability. While forcing patterns are generally similar in appearance, results indicate that differences in the relative amplitude of the equatorial and extratropical components of the SST forcing are sufficient to give rise to differing teleconnections, leading to regional differences in the amplitude and significance of the precipitation respon...
Geophysical Research Letters | 2017
Robert J. Burgman; Ben P. Kirtman; Amy C. Clement; Heather Vazquez
Recent studies suggest that low clouds in the Pacific play an important role in the observed decadal climate variability and future climate change. In this study, we implement a novel modeling experiment designed to isolate how interactions between local and remote feedbacks associated with low cloud, SSTs, and the large-scale circulation play a significant role in the observed persistence of tropical Pacific SST and associated North American drought. The modeling approach involves the incorporation of observed patterns of satellite-derived shortwave cloud radiative effect (SWCRE) into the coupled model framework and is ideally suited for examining the role of local and large-scale coupled feedbacks and ocean heat transport in Pacific decadal variability. We show that changes in SWCRE forcing in eastern subtropical Pacific alone reproduces much of the observed changes in SST and atmospheric circulation over the past 16 years, including the observed changes in precipitation over much of the Western Hemisphere.
International Geophysics | 2013
Ben P. Kirtman; Tim Stockdale; Robert J. Burgman
Abstract This chapter summarizes the scientific basis for and the current status of seasonal-to-interannual prediction with particular emphasis on the role of the tropical oceans. The first part of the chapter focuses on oceanic sources of predictability in the tropical Pacific, Atlantic, and Indian Oceans. Seasonal-to-interannual predictability issues in the Northern Hemisphere extratropics are also discussed. Mechanisms that limit predictability, particularly for ENSO, are highlighted. The second part of the chapter describes the forecast quality and procedures in practice today. Finally, the concluding remarks identify some outstanding challenges.
Geophysical Research Letters | 2008
Robert J. Burgman; Amy C. Clement; Christos M. Mitas; J. Chen; K. Esslinger
Geophysical Research Letters | 2010
Robert J. Burgman; Richard Seager; Amy C. Clement; Celine Herweijer