Robert J. Cain
Randall Division of Cell and Molecular Biophysics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert J. Cain.
Nature | 2008
Mariona Graupera; Julie Guillermet-Guibert; Lazaros C. Foukas; Li-Kun Phng; Robert J. Cain; Ashreena Salpekar; Wayne Pearce; Stephen Meek; Jaime Millan; Pedro R. Cutillas; Andrew Smith; Anne J. Ridley; Christiana Ruhrberg; Holger Gerhardt; Bart Vanhaesebroeck
Phosphoinositide 3-kinases (PI3Ks) signal downstream of multiple cell-surface receptor types. Class IA PI3K isoforms couple to tyrosine kinases and consist of a p110 catalytic subunit (p110α, p110β or p110δ), constitutively bound to one of five distinct p85 regulatory subunits. PI3Ks have been implicated in angiogenesis, but little is known about potential selectivity among the PI3K isoforms and their mechanism of action in endothelial cells during angiogenesis in vivo. Here we show that only p110α activity is essential for vascular development. Ubiquitous or endothelial cell-specific inactivation of p110α led to embryonic lethality at mid-gestation because of severe defects in angiogenic sprouting and vascular remodelling. p110α exerts this critical endothelial cell-autonomous function by regulating endothelial cell migration through the small GTPase RhoA. p110α activity is particularly high in endothelial cells and preferentially induced by tyrosine kinase ligands (such as vascular endothelial growth factor (VEGF)-A). In contrast, p110β in endothelial cells signals downstream of G-protein-coupled receptor (GPCR) ligands such as SDF-1α, whereas p110δ is expressed at low level and contributes only minimally to PI3K activity in endothelial cells. These results provide the first in vivo evidence for p110-isoform selectivity in endothelial PI3K signalling during angiogenesis.
Biology of the Cell | 2009
Robert J. Cain; Anne J. Ridley
Cell migration is essential for many biological processes in animals and is a complex highly co‐ordinated process that involves cell polarization, actin‐driven protrusion and formation and turnover of cell adhesions. The PI3K (phosphoinositide 3‐kinase) family of lipid kinases regulate cell migration in many different cell types, both through direct binding of proteins to their lipid products and indirectly through crosstalk with other pathways, such as Rho GTPase signalling. Emerging evidence suggests that the involvement of PI3Ks at different stages of migration varies even within one cell type, and is dependent on the combination of external stimuli, as well as on the signalling status of the cell. In addition, it appears that different PI3K isoforms have distinct roles in cell polarization and migration. This review describes how PI3K signalling is regulated by pro‐migratory stimuli, and the diverse ways in which PI3K‐mediated signal transduction contributes to different aspects of cell migration.
Current Opinion in Microbiology | 2011
Aitor de las Heras; Robert J. Cain; Magdalena K. Bielecka; José A. Vázquez-Boland
Listeria monocytogenes is the causative agent of listeriosis, a severe foodborne infection. These bacteria live as soil saprotrophs on decaying plant matter but also as intracellular parasites, using the cell cytosol as a replication niche. PrfA, a regulatory protein, integrates a number of environmental cues that signal the transition between these two contrasting lifestyles, activating a set of key virulence factors during host infection. While a number of details concerning the general mode of action of this virulence master switch have been elucidated, others remain unsolved. Recent work has revealed additional mechanisms that contribute to L. monocytogenes virulence modulation, often via cross-talk with PrfA, or by regulating new genes involved in host colonization.
BMC Biology | 2010
Jaime Millán; Robert J. Cain; Natalia Reglero-Real; Carolina L. Bigarella; Beatriz Marcos-Ramiro; Laura Fernández-Martín; Isabel Correas; Anne J. Ridley
BackgroundEndothelial cell-cell junctions maintain endothelial integrity and regulate vascular morphogenesis and homeostasis. Cell-cell junctions are usually depicted with a linear morphology along the boundaries between adjacent cells and in contact with cortical F-actin. However, in the endothelium, cell-cell junctions are highly dynamic and morphologically heterogeneous.ResultsWe report that endothelial cell-cell junctions can attach to the ends of stress fibres instead of to cortical F-actin, forming structures that we name discontinuous adherens junctions (AJ). Discontinuous AJ are highly dynamic and are increased in response to tumour necrosis factor (TNF)-α, correlating with the appearance of stress fibres. We show that vascular endothelial (VE)-cadherin/β-catenin/α-catenin complexes in discontinuous AJ are linked to stress fibres. Moreover, discontinuous AJ connect stress fibres from adjacent cells independently of focal adhesions, of which there are very few in confluent endothelial cells, even in TNF-α-stimulated cells. RNAi-mediated knockdown of VE-cadherin, but not zonula occludens-1, reduces the linkage of stress fibres to cell-cell junctions, increases focal adhesions, and dramatically alters the distribution of these actin cables in confluent endothelial cells.ConclusionsOur results indicate that stress fibres from neighbouring cells are physically connected through discontinuous AJ, and that stress fibres can be stabilized by AJ-associated multi-protein complexes distinct from focal adhesions.
Molecular Microbiology | 2005
Richard D. Hayward; Robert J. Cain; Emma J. McGhie; Neil Phillips; Matthew J. Garner; Vassilis Koronakis
A ubiquitous early step in infection of man and animals by enteric bacterial pathogens like Salmonella, Shigella and enteropathogenic Escherichia coli (EPEC) is the translocation of virulence effector proteins into mammalian cells via specialized type III secretion systems (TTSSs). Translocated effectors subvert the host cytoskeleton and stimulate signalling to promote bacterial internalization or survival. Target cell plasma membrane cholesterol is central to pathogen–host cross‐talk, but the precise nature of its critical contribution remains unknown. Using in vitro cholesterol‐binding assays, we demonstrate that Salmonella (SipB) and Shigella (IpaB) TTSS translocon components bind cholesterol with high affinity. Direct visualization of cell‐associated fluorescently labelled SipB and parallel immunogold transmission electron microscopy revealed that cholesterol levels limit both the amount and distribution of plasma membrane‐integrated translocon. Correspondingly, cholesterol depletion blocked effector translocation into cultured mammalian cells by not only the related Salmonella and Shigella TTSSs, but also the more divergent EPEC system. The data reveal that cholesterol‐dependent association of the bacterial TTSS translocon with the target cell plasma membrane is essential for translocon activation and effector delivery into mammalian cells.
Journal of Cell Biology | 2010
Robert J. Cain; Bart Vanhaesebroeck; Anne J. Ridley
Only the p110α isoform of PI3K mediates the association of VE-cadherin with Pyk2, a Rac GEF and the p85 PI3K regulatory subunit, to reduce junctional integrity in response to TNF.
Cell | 2013
Philippe Riou; Svend Kjær; Ritu Garg; Andrew Purkiss; Roger George; Robert J. Cain; Ganka Bineva; Nicolas Reymond; Brad McColl; Andrew J. Thompson; Nicola O’Reilly; Neil Q. McDonald; Peter J. Parker; Anne J. Ridley
Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins.Summary Signaling through G proteins normally involves conformational switching between GTP- and GDP-bound states. Several Rho GTPases are also regulated by RhoGDI binding and sequestering in the cytosol. Rnd proteins are atypical constitutively GTP-bound Rho proteins, whose regulation remains elusive. Here, we report a high-affinity 14-3-3-binding site at the C terminus of Rnd3 consisting of both the Cys241-farnesyl moiety and a Rho-associated coiled coil containing protein kinase (ROCK)-dependent Ser240 phosphorylation site. 14-3-3 binding to Rnd3 also involves phosphorylation of Ser218 by ROCK and/or Ser210 by protein kinase C (PKC). The crystal structure of a phosphorylated, farnesylated Rnd3 peptide with 14-3-3 reveals a hydrophobic groove in 14-3-3 proteins accommodating the farnesyl moiety. Functionally, 14-3-3 inhibits Rnd3-induced cell rounding by translocating it from the plasma membrane to the cytosol. Rnd1, Rnd2, and geranylgeranylated Rap1A interact similarly with 14-3-3. In contrast to the canonical GTP/GDP switch that regulates most Ras superfamily members, our results reveal an unprecedented mechanism for G protein inhibition by 14-3-3 proteins.
PLOS Pathogens | 2008
Robert J. Cain; Richard D. Hayward; Vassilis Koronakis
Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction.
Molecular Microbiology | 2004
Robert J. Cain; Richard D. Hayward; Vassilis Koronakis
Salmonella species trigger host membrane ruffling to force their internalization into non‐phagocytic intestinal epithelial cells. This requires bacterial effector protein delivery into the target cell via a type III secretion system. Six translocated effectors manipulate cellular actin dynamics, but how their direct and indirect activities are spatially and temporally co‐ordinated to promote productive cytoskeletal rearrangements remains essentially unexplored. To gain further insight into this process, we applied mechanical cell fractionation and immunofluorescence microscopy to systematically investigate the subcellular localization of epitope‐tagged effectors in transiently transfected and Salmonella‐infected cultured cells. Although five effectors contain no apparent membrane‐targeting domains, all six localized exclusively in the target cell plasma membrane fraction and correspondingly were visualized at the cell periphery, from where they induced distinct effects on the actin cytoskeleton. Unexpectedly, no translocated effector pool was detectable in the cell cytosol. Using parallel in vitro assays, we demonstrate that the prenylated cellular GTPase Cdc42 is necessary and sufficient for membrane association of the Salmonella GTP exchange factor and GTPase‐activating protein mimics SopE and SptP, which have no intrinsic lipid affinity. The data show that the host plasma membrane is a critical interface for effector–target interaction, and establish versatile systems to further dissect effector interplay.
Gene Therapy | 2002
Uta Griesenbach; Rl Cassady; Robert J. Cain; Rm duBois; Duncan M. Geddes; E W F W Alton
Lung inflammation leads to severe tissue destruction and ultimately organ failure in a number of diseases, including cystic fibrosis (CF). The transcription factor nuclear factor kappa B (NFκB) regulates expression of many pro-inflammatory mediators. We have assessed the effect of topical administration of NFκB decoys in a bleomycin model of acute lung inflammation. Using fluorescein-labelled decoy oligonucleotides (ODN) (80 μg/mouse) we have shown that lipid-complexed and ‘naked’ ODN transfect conducting airway epithelium in a comparable manner (approximately 65% of cells). However, the ODN were detectable in the cytoplasm, but not in the nucleus of transfected cells. An increase of ODN dose to 500 μg/mouse did not increase nuclear transfection significantly. We determined the effect of cytoplasmic NFκB decoys on bleomycin-induced inflammation. We transfected mice with ‘naked’ decoy and scrambled ODN (500 μg) 1 h before intratracheal administration of bleomycin. We measured IL6 secretion in BALF and lung homogenates and total and differential cell counts in BALF 5 days after bleomycin administration. We did not detect a difference between NFκB decoy and scrambled ODN-treated animals in any of the parameters tested. We suggest that access of ODN to the nucleus of airway epithelial cells is a key problem, limiting the efficacy of such decoy strategies, as well as attempts at gene repair.