Robert J. Hill
University of Tennessee Health Science Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert J. Hill.
Immunological Reviews | 1992
Tony N. Marion; David M. Tillman; Nainn Tsyr Jou; Robert J. Hill
Results from our analyses of variable region gene usage among spontaneous anti-DNA antibodies in autoimmune mice have indicated that both the early IgM and later-appearing IgG autoantibodies to DNA are generated by clonally selected B cells. The recurrent usage of particular variable region genes among all the anti-DNA hybridomas analyzed and reported to date supports this hypothesis. The preferential expression of particular light and heavy chain variable region genes among selected populations of both IgM and IgG anti-DNA hybridomas likewise supports the hypothesis. Both IgM and IgG antibody-producing B cells are derived from the same clonal precursor population and may be derived from the same B cell clonal precursor within an individual mouse. The selective and recurrent expression of germline and somatically-derived structures that would be expected to promote protein binding to DNA within anti-DNA antibody variable regions, particularly arginines in both light and heavy chain complementarity-determining regions, indicates that DNA or DNA-containing complexes may be the antigen that stimulates anti-DNA antibody in autoimmune mice. The progressive increase in the specificity of spontaneous anti-DNA antibodies for native DNA as the autoimmune response matures from IgM to IgG likewise suggests that DNA may be the antigenic stimulus for spontaneous anti-DNA in autoimmune mice. A hypothetical, computer-generated model of anti-DNA antibody binding to DNA provides an interesting paradigm for the molecular basis of antibody specificity for DNA.
Archives of Biochemistry and Biophysics | 1957
Roger E. Koeppe; Martin L. Minthorn; Robert J. Hill
Abstract The pattern of labeling in glycogen, serine, alanine, and aspartic acid has been determined in rats given an intraperitoneal injection of glycerol-1,3-C14. Only slight randomization was observed between carbons 2 and 3 of serine and alanine, and carbons 1 and 2 of glycogen. These results indicate that rat serine is formed rather directly from a 3-carbon intermediate of glycolysis, other than pyruvate.
Journal of Biological Chemistry | 1962
Robert J. Hill; William H. Konigsberg; Guido Guidotti; Lyman C. Craig
Journal of Biological Chemistry | 1962
Guido Guidotti; Robert J. Hill; William H. Konigsberg
Journal of Biological Chemistry | 1967
Robert J. Hill; Rosemary W. Davis
Journal of Biological Chemistry | 1973
Robert M. Macleod; Robert J. Hill
Journal of Organic Chemistry | 1961
William Konigsberg; Robert J. Hill; Lyman C. Craig
Journal of Biological Chemistry | 1959
Roger E. Koeppe; George A. Mourkides; Robert J. Hill
Journal of Biological Chemistry | 1959
William E. Wilson; Robert J. Hill; Roger E. Koeppe
Journal of Biological Chemistry | 1970
Robert M. Macleod; Robert J. Hill