Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Naiman is active.

Publication


Featured researches published by Robert J. Naiman.


Biological Reviews | 2006

Freshwater biodiversity: importance, threats, status and conservation challenges

David Dudgeon; Angela H. Arthington; Mark O. Gessner; Zen’ichiro Kawabata; Duncan Knowler; Christian Lévêque; Robert J. Naiman; Anne-Hélène Prieur-Richard; Doris Soto; Melanie L. J. Stiassny; Caroline A Sullivan

Freshwater biodiversity is the over‐riding conservation priority during the International Decade for Action ‐‘Water for Life’ ‐ 2005 to 2015. Fresh water makes up only 0.01% of the Worlds water and approximately 0.8 % of the Earths surface, yet this tiny fraction of global water supports at least 100 000 species out of approximately 1.8 million ‐ almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the ‘Water for Life’ decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as ‘receivers’ of land‐use effluents, and the problems posed by endemism and thus non‐substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and ‐ in the case of migrating aquatic fauna ‐ downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade‐offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long‐term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management ‐ one that has been appropriately termed ‘reconciliation ecology’.


Ecological Applications | 2001

Water in a Changing World

Robert B. Jackson; Stephen R. Carpenter; Clifford N. Dahm; Diane M. McKnight; Robert J. Naiman; Sandra Postel; Steven W. Running

Renewable fresh water comprises a tiny fraction of the global water pool but is the foundation for life in terrestrial and freshwater ecosystems. The benefits to humans of renewable fresh water include water for drinking, irrigation, and industrial uses, for production of fish and waterfowl, and for such instream uses as recreation, transportation, and waste disposal. In the coming century, climate change and a growing imbalance among freshwater supply, consumption, and population will alter the water cycle dramatically. Many regions of the world are already limited by the amount and quality of available water. In the next 30 yr alone, accessible runoff is unlikely to increase more than 10%, but the earths population is projected to rise by approximately one-third. Unless the efficiency of water use rises, this imbalance will reduce freshwater ecosystem services, increase the number of aquatic species facing extinction, and further fragment wetlands, rivers, deltas, and estuaries. Based on the scientific evidence currently available, we conclude that: (1) over half of accessible freshwater runoff globally is already appropriated for human use; (2) more than 1 × 109 people currently lack access to clean drinking water and almost 3 × 109 people lack basic sanitation services; (3) because the human population will grow faster than increases in the amount of accessible fresh water, per capita availability of fresh water will decrease in the coming century; (4) climate change will cause a general intensification of the earths hydrological cycle in the next 100 yr, with generally increased precipitation, evapotranspiration, and occurrence of storms, and significant changes in biogeochemical processes influencing water quality; (5) at least 90% of total water discharge from U.S. rivers is strongly affected by channel fragmentation from dams, reservoirs, interbasin diversions, and irrigation; and (6) globally, 20% of freshwater fish species are threatened or extinct, and freshwater species make up 47% of all animals federally endangered in the United States. The growing demands on freshwater resources create an urgent need to link research with improved water management. Better monitoring, assessment, and forecasting of water resources will help to allocate water more efficiently among competing needs. Currently in the United States, at least six federal departments and 20 agencies share responsibilities for various aspects of the hydrologic cycle. Coordination by a single panel with members drawn from each department, or by a central agency, would acknowledge the diverse pressures on freshwater systems and could lead to the development of a well-coordinated national plan.


BioScience | 1988

Alteration of North American Streams by Beaver

Robert J. Naiman; Carol A. Johnston; James C. Kelley

organic matter in the channel, create and maintain wetlands, modify nutrient cycling and decomposition dynamics, modify the structure and dynamics of the riparian zone, influence the character of water and materials transported downstream, and ultimately influence plant and animal community composition and diversity (Naiman and Melillo 1984, Naiman et al. 1986). In addition to their importance at the ecosystem level, these effects have a significant impact on the landscape and must be interpreted over broad spatial and temporal scales as beaver population dynamics shift in response to disturbance, food supply, disease, and predation. Although once more prevalent than they are today, beaver-induced alterations to drainage networks are not localized or unusual. Where beaver


BioScience | 1999

Microclimate in Forest Ecosystem and Landscape Ecology

Jiquan Chen; Sari C. Saunders; Thomas R. Crow; Robert J. Naiman; Kimberley D. Brosofske; Glenn D. Mroz; Brian L. Brookshire; Jerry F. Franklin

Microclimate is the suite of climatic conditions measured in localized areas near the earths surface (Geiger 1965). These environmental variables, which include temperature, light, windspeed, and moisture, have been critical throughout human history, providing meaningful indicators for habitat selection and other activities. For example, for 2600 years the Chinese have used localized seasonal changes in temperature and precipitation to schedule their agricultural activities. In seminal studies, Shirley (1929, 1945) emphasized microclimate as a determinant of ecological patterns in both plant and animal communities and a driver of such processes as the growth and mortality of organisms. The importance of microclimate in influencing ecological processes such as plant regeneration and growth, soil resperation and growth, soil repiration, nutrient cycling, and wildlife habitat selection has became an essential component of current ecological research (Perry 1994). plant regeneration and growth, soil respiration, nutrient cycling, and


Ecosystems | 2002

Pacific Salmon, Nutrients, and the Dynamics of Freshwater and Riparian Ecosystems

Robert J. Naiman; Robert E. Bilby; Daniel E. Schindler; James M. Helfield

Pacific salmon (Oncorhynchus spp.) accumulate substantial nutrients in their bodies as they grow to adulthood at sea. These nutrients are carried to predominantly oligotrophic lakes and streams, where they are released during and after spawning. Research over more than 3 decades has shown that the annual deposition of salmon-borne marine-derived nutrients (MD-nutrients) is important for the productivity of freshwater communities throughout the Pacific coastal region. However, the pathways and mechanisms for MD-nutrient transfer and accumulation in freshwater and riparian ecosystems remain virtually unexplored, consequently, there are many uncertainties in this area. This article addresses three related topics. First, we summarize recent advances in our understanding of the linkages among MD-nutrients, freshwater (including riparian) ecosystems, and community dynamics by addressing the importance of MD-nutrients to lakes and streams and by then reviewing large-scale and long-term processes in the atmosphere and ocean that govern variability in salmon populations. Second, we evaluate the validity of the discoveries and their implications for active ecosystem management, noting areas where extrapolation from these results still requires great caution. Finally, we outline five key research issues where additional discoveries could greatly augment our understanding of the processes shaping the structure and dynamics of salmon populations and the characteristics of their freshwater habitat and associated riparian zones. Collectively, the data suggest that the freshwater portion of the salmon production system is intimately linked to the ocean. Moreover, for the system to be sustainable, a holistic approach to management will be required. This holistic approach will need to treat climate cycles, salmon, riparian vegetation, predators, and MD-nutrient flowpaths and feedbacks as an integrated system.


Ecology | 1986

Ecosystem Alteation of Boreal Forest Streams by Beaver (Castor Canadensis)

Robert J. Naiman; Jerry M. Melillo; John E. Hobbie

Beaver (Castor canadensis) alter the structure and dynamics of aquatic ecosystems with a minimum of direct energy or nutrient transfer. Through dam building and feeding activities, beaver act as a keystone species to alter hydrology, channel geomorphology, biogeochemical pathways, and community productivity. Here we consider the effects of beaver activity on several major ecosystem components and processes in boreal forest drainage networks in Quebec, Canada. The density of dams on the small streams (≤4th order) we studied average 10.6 dams/km; the streams retain up to 6500 m3 of sediment per dam, and the wetted surface area of the channel is increased up to several hundred—fold. Beaver are also active in large order streams (≥5th order), but their effects are most noticeable along riverbanks and in floodplains. Comparative carbon budgets per unit area for a riffle on 2nd order Beaver Creek and a beaver pond downstream show the pond receives only 42% of the carbon acquired by the riffle annually. However, because the pond has a surface area seven times greater than the riffle, it receives nearly twice as much carbon as the riffle per unit of channel length. Carbon in the pond has an estimated turnover time of °161 yr compared to ° 24yr for the riffle. Beaver ponds are important sites for organic matter processing; the stream metabolism index (SMI), a measure of ecosystem efficiency for the utilization or storage of organic inputs, is 1.63 for the pond compared to 0.30 for the riffle; the turnover length (S) for particulate carbon is 1.2 km for the pond compared to 8.0 km for the riffle. Beaver—induced alterations to the structure and function of streams suggest removal of beaver prior to 1900 AD had substantial effects on the dynamics of lotic ecosystems. Our results suggest that current concepts of the organization and diversity of unaltered stream ecosystems in North America should recognize the keystone role of beaver, as drainage networks with beaver are substantially different in their biogeochemical economies than those without beaver.


Ecological Applications | 2000

Ecological Principles and Guidelines for Managing the Use of Land

Virginia H. Dale; Sandra A. Brown; R A Haeuber; N. T. Hobbs; Nancy Huntly; Robert J. Naiman; W E Riebsame; Monica G. Turner; T J Valone

Decision-making levels in the United States and examples of their land-use management powers, both regulatory and nonregulatory (Dale et al, 2000, Reproduced with permission of Ecological Society of America, Redraivn by Travis Witt, 2014).


Ecology | 1998

PLANT SPECIES RICHNESS IN RIPARIAN WETLANDS—A TEST OF BIODIVERSITY THEORY

Michael M. Pollock; Robert J. Naiman; Thomas A. Hanley

In this study, flood frequency, productivity, and spatial heterogeneity were correlated with plant species richness (SR) among wetlands on a coastal island in southeast Alaska. Studies of 16 sites in or near the Kadashan River basin demonstrated nonlinear, unimodal relations between flood frequency and SR, productivity and SR, and linear re- lations between SR and the spatial variation of flood frequencies (SVFF) within a site. SVFF is caused by microtopographic variation in elevation. A nonlinear regression model relating SR to flood frequency and SVFF explained much of the variation in SR between wetland communities. Sites with intermediate flood frequencies and high SVFF were spe- cies-rich, while sites frequently, rarely, or permanently flooded and with low SVFF were species-poor. The data suggest that small-scale spatial variation can dramatically alter the impact of disturbances. The data also support Michael Hustons dynamic-equilibrium model of species diversity, which predicts the effects of productivity and disturbance on diversity patterns. Species- rich sites had low to intermediate levels of productivity and intermediate flood frequencies, and species-poor sites had very low or high flood frequencies and low productivity, sup- porting the models predictions. The model was tested at contrasting spatial scales (1000 m2 and 1 M2). At the 1000-M2 scale, Hustons model predicted 78% of the variation in SR. At the microplot scale, relationships between SR and flood frequency were weaker, and the dynamic-equilibrium model predicted only 36% of the variation in SR.


Environmental Management | 1990

Overview of case studies on recovery of aquatic systems from disturbance

Gerald J. Niemi; Philip W. DeVore; Naomi E. Detenbeck; Debra L. Taylor; Ann R. Lima; John Pastor; J. David Yount; Robert J. Naiman

An extensive review of the published literature identified more than 150 case studies in which some aspect of resilience in freshwater systems was reported. Approximately 79% of systems studied were lotic and the remainder lentic. Most of the stressor types were chemical with DDT (N=29) and rotenone (N=15) the most common. The most common nonchemical stressors were logging activity (N=16), flooding (N=8), dredging (N=3), and drought (N=7).The variety of endpoints to which recovery could be measured ranged from sparse data for phytoplankton (N=13), periphyton (N=6), and macrophytes (N=8) to relatively more data for fish (N=412) and macroinvertebrates (N=698). Unfortunately the same characteristics were rarely measured consistently among sites. For example, with respect to fish, more than 30 different species were studied and recovery was measured in many ways, most commonly on the basis of: (1) first reappearance of the species, (2) return time of predisturbance densities, and (3) return time of predisturbance average individual size. Based on these criteria, all systems in these studies seem to be resilient to most disturbances with most recovery times being less than three years. Exceptions included when (1) the disturbance resulted in physical alteration of the existing habitat, (2) residual pollutants remained in the system, or (3) the system was isolated and recolonization was suppressed.


Ecosystems | 2003

Effects of land cover on stream ecosystems: Roles of empirical models and scaling issues

David Strayer; R. Edward Beighley; Lisa C. Thompson; Shane Brooks; Christer Nilsson; Gilles Pinay; Robert J. Naiman

We built empirical models to estimate the effects of land cover on stream ecosystems in the mid-Atlantic region (USA) and to evaluate the spatial scales over which such models are most effective. Predictive variables included land cover in the watershed, in the streamside corridor, and near the study site, and the number and location of dams and point sources in the watershed. Response variables were annual nitrate flux; species richness of fish, benthic macroinvertebrates, and aquatic plants; and cover of aquatic plants and riparian vegetation. All data were taken from publicly available databases, mostly over the Internet. Land cover was significantly correlated with all ecological response variables. Modeled R2 ranged from 0.07 to 0.5, but large data sets often allowed us to estimate with acceptable precision the regression coefficients that express the change in ecological conditions associated with a unit change in land cover. Dam- and point-source variables were ineffective at predicting ecological conditions in streams and rivers, probably because of inadequacies in the data sets. The spatial perspective (whole watershed, streamside corridor, or local) most effective at predicting ecological response variables varied across response variables, apparently in concord with the mechanisms that control each of these variables. We found some evidence that predictive power fell in very small watersheds (less than 1–10 km2), suggesting that the spatial arrangement of landscape patches may become critical at these small scales. Empirical models can replace, constrain, or be combined with more mechanistic models to understand the effects of land-cover change on stream ecosystems.

Collaboration


Dive into the Robert J. Naiman's collaboration.

Top Co-Authors

Avatar

Neil E. Pettit

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. Bisson

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Michael E. McClain

UNESCO-IHE Institute for Water Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henri Décamps

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce E. Rieman

United States Forest Service

View shared research outputs
Top Co-Authors

Avatar

Carol A. Johnston

South Dakota State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge