Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert J. Phillips is active.

Publication


Featured researches published by Robert J. Phillips.


Autonomic Neuroscience: Basic and Clinical | 2003

Aging of the myenteric plexus: neuronal loss is specific to cholinergic neurons

Robert J. Phillips; Elizabeth J. Kieffer; Terry L. Powley

Neuron loss occurs in the myenteric plexus of the aged rat. The myenteric plexus is composed of two mutually exclusive neuronal subpopulations expressing, respectively, nitrergic and cholinergic phenotypes. The goal of the present study, therefore, was to determine if neuron loss is specific to one phenotype, or occurs in both. Ad libitum fed virgin male Fischer 344 rats of 3 and 24 months of age were used in each of two neuronal staining protocols (n=10/age/neuron stain). The stomach, duodenum, jejunum, ileum, colon, and rectum were prepared as whole mounts and processed with either NADPHd or Cuprolinic Blue to stain, respectively, the nitrergic subpopulation or the entire population of myenteric neurons. Neuron numbers and sizes were determined for each preparation. Neuron counts from 24-month-old rats were corrected for changes in tissue area resulting from growth. There was no age-related loss of NADPHd-positive neurons for any of the regions sampled, whereas significant losses of Cuprolinic Blue-labeled neurons occurred in the small and large intestines of 24-month-old rats. At the two ages, the average neuron sizes were similar in the stomach and small intestine for both stains, but neurons in the large intestine were significantly larger at 24 months. In addition, numerous swollen NADPHd-positive axons were found in the large intestine at 24 months. These findings support the hypothesis that age-related cell loss in the small and large intestines occurs exclusively in the cholinergic subpopulation. It appears, however, from the somatic hypertrophy and the presence of swollen axons that the nitrergic neurons are not completely spared from the effects of age.


Neuroscience | 2008

ALPHA-SYNUCLEIN-IMMUNOPOSITIVE MYENTERIC NEURONS AND VAGAL PREGANGLIONIC TERMINALS: AUTONOMIC PATHWAY IMPLICATED IN PARKINSON’S DISEASE?

Robert J. Phillips; Gary C. Walter; Sarah L. Wilder; Elizabeth A. Baronowsky; Terry L. Powley

The protein alpha-synuclein is implicated in the development of Parkinsons disease. The molecule forms Lewy body aggregates that are hallmarks of the disease, has been associated with the spread of neuropathology from the peripheral to the CNS, and appears to be involved with the autonomic disorders responsible for the gastrointestinal (GI) symptoms of individuals afflicted with Parkinsons. To characterize the normative expression of alpha-synuclein in the innervation of the GI tract, we examined both the postganglionic neurons and the preganglionic projections by which the disease is postulated to retrogradely invade the CNS. Specifically, in Fischer 344 and Sprague-Dawley rats, immunohistochemistry in conjunction with injections of the tracer Dextran-Texas Red was used to determine, respectively, the expression of alpha-synuclein in the myenteric plexus and in the vagal terminals. Alpha-synuclein is expressed in a subpopulation of myenteric neurons, with the proportion of positive somata increasing from the stomach (approximately 3%) through duodenum (proximal, approximately 6%; distal, approximately 13%) to jejunum (approximately 22%). Alpha-synuclein is co-expressed with the nitrergic enzyme nitric oxide synthase (NOS) or the cholinergic markers calbindin and calretinin in regionally specific patterns: approximately 90% of forestomach neurons positive for alpha-synuclein express NOS, whereas approximately 92% of corpus-antrum neurons positive for alpha-synuclein express cholinergic markers. Vagal afferent endings in the myenteric plexus and the GI smooth muscle do not express alpha-synuclein, whereas, virtually all vagal preganglionic projections to the gut express alpha-synuclein, both in axons and in terminal varicosities in apposition with myenteric neurons. Vagotomy eliminates most, but not all, alpha-synuclein-positive neurites in the plexus. Some vagal preganglionic efferents expressing alpha-synuclein form varicose terminal rings around myenteric plexus neurons that are also positive for the protein, thus providing a candidate alpha-synuclein-expressing pathway for the retrograde transport of putative Parkinsons pathogens or toxins from the ENS to the CNS.


Journal of Neuroscience Methods | 2004

Quantification of neurons in the myenteric plexus: an evaluation of putative pan-neuronal markers

Robert J. Phillips; Sara L. Hargrave; Brie S. Rhodes; David A Zopf; Terry L. Powley

Accurate estimates of the total number of neurons located in the wall of the gut are essential for studies of the enteric nervous system (ENS). Though several stains and antibodies are used routinely as pan-neuronal markers, controversies of relative sensitivity and completeness have been difficult to resolve, at least in part because comparisons often must be made across experiments and laboratories. Therefore, we evaluated the efficacy of four putative pan-neuronal markers for the ENS, under comparable conditions. Neurons in the myenteric plexus of wholemounts taken from the small intestines of Fischer 344 rats were stained using Cuprolinic Blue, anti-HuC/D, anti-protein gene product 9.5, or FluoroGold injections followed by permanent labeling with an antibody to the FluoroGold molecule. All four markers had useful features, but both protein gene product 9.5 and FluoroGold were found to be problematic for obtaining reliable counts. As a result, only neurons labeled with either Cuprolinic Blue or anti-HuC/D were compared quantitatively. Based on counts from permanently labeled tissue, Cuprolinic Blue and HuC/D were similarly effective in labeling all neurons. Because the two protocols have different strengths and weaknesses, Cuprolinic Blue and HuC/D provide a complementary set of labels to study the total neuronal population of the ENS.


The Journal of Comparative Neurology | 2000

Vagal afferent innervation of smooth muscle in the stomach and duodenum of the mouse: morphology and topography.

Edward A. Fox; Robert J. Phillips; Fred A. Martinson; Elizabeth A. Baronowsky; Terry L. Powley

Intraganglionic laminar endings (IGLEs) and intramuscular arrays (IMAs), the two putative mechanoreceptors that the vagus nerve supplies to the gastrointestinal smooth muscle, have been characterized almost exclusively in the rat. To provide normative inventories of these afferents for the mouse, the authors examined the endings in the stomach and small intestine of three strains used as backgrounds for gene manipulations (i.e., C57, 129/SvJ, and WBB6). Animals received nodose ganglion injections of wheat germ agglutinin‐horseradish peroxidase or dextran‐tetramethylrhodamine conjugated to biotin. The horseradish peroxidase tissue was processed with tetramethylbenzidine and was used to map the distributions and densities of the two endings; the dextran material was counterstained with c‐Kit immunohistochemistry to assess interactions between intramuscular arrays and interstitial cells of Cajal. IGLEs and IMAs constituted the vagal innervation of mouse gastric and duodenal smooth muscle. IGLE morphology and distributions, with peak densities in the corpus‐antrum, were similar in the three strains of mice and comparable to those observed in rats. IMAs varied in complexity from region to region but tended to be simpler (fewer telodendria) in mice than in rats. IMAs were most concentrated in the forestomach and sphincters in mice, as in rats, but the topographic distributions of the endings varied both between strains of mice (subtly) and between species (more dramatically). IMAs appeared to make appositions with both interstitial cells and smooth muscle fibers. This survey should make it practical to assay the effects of genetic (e.g., knockout) and experimental (e.g., regeneration) manipulations affecting visceral afferents and their target tissues. J. Comp. Neurol. 428:558–576, 2000.


The Journal of Comparative Neurology | 2001

As the gut ages: Timetables for aging of innervation vary by organ in the Fischer 344 rat

Robert J. Phillips; Terry L. Powley

To explore the effects of aging on the vagal innervation of the gastrointestinal (GI) tract, male Fischer 344 rats at 3 and 24 months of age were injected in the left nodose ganglion with 3 μl of either 4% wheat germ agglutinin‐horseradish peroxidase (to label sensory endings) or 1% cholera toxin subunit B‐horseradish peroxidase (to label motor endings). The stomach and duodenum were prepared as wholemounts and processed with tetramethyl benzidine. In addition, to study age‐related changes in the myenteric plexus, the stomachs, small intestines, and large intestines from 3‐, 12‐, 21‐, 24‐ and 27‐month‐old rats were prepared as wholemounts and processed with Cuprolinic Blue (to stain the neurons). Vagal afferent endings, motor terminal profiles, and myenteric neurons were counted and mapped with a sampling grid. In the stomach, both the vagal and myenteric innervation were stable between the ages of 3 and 24 months; however, a decrease in the number of myenteric neurons in the forestomach was noted at 27 months. In the small and large intestines, myenteric cell loss occurred by 12 months of age, progressed with age, and appeared to be governed by several general principles: (1) the rate of cell loss was organ‐specific, with a gradient of increasing severity from proximal to distal in the gut; (2) within organs of the GI tract, the rate of cell loss differed between regions; and (3) for given regions, cell losses progressed linearly with increasing age. The findings suggest that a positive relationship exists between the density of vagal extrinsic innervation and myenteric neuron survival; however, whether this results from the vagal innervation and/or other factor(s) protecting or rescuing myenteric neurons from age‐related attrition remains to be determined. J. Comp. Neurol. 434:358–377, 2001.


The Journal of Comparative Neurology | 1997

Afferent innervation of gastrointestinal tract smooth muscle by the hepatic branch of the vagus

Robert J. Phillips; Elizabeth A. Baronowsky; Terry L. Powley

To survey the vagal hepatic branch afferent projections to and the terminal specializations in the gastrointestinal tract, male Sprague‐Dawley rats were given subdiaphragmatic vagotomies, sparing only the common hepatic branch, and were injected with 3 μl of 8% wheat germ agglutinin‐horseradish peroxidase in the left nodose ganglion. The nodose ganglia, the stomach, the first 8 cm of duodenum, and the cecum were prepared as wholemounts and were processed with tetramethyl benzidine. Hepatic afferent innervation of the ventral stomach consisted of one or more bundles entering at the lower esophageal sphincter and coursing to the forestomach, where they branched into distinct terminal fields. The only fibers on the dorsal forestomach were distal branches and terminals that wrapped around the greater curvature from the ventral side. Hepatic afferents supplied the forestomach with both intraganglionic laminar endings (IGLEs; putative mechanosensors that coordinate peristalsis) and intramuscular arrays (IMAs; considered tension receptors). IGLEs were located primarily on the ventral wall of the stomach, whereas IMAs were distributed symmetrically. Afferents were also supplied to the distal antrum and the pylorus, with pyloric innervation consisting almost exclusively of IMAs. Innervation of the proximal duodenum was denser in the first 3 cm and decreased progressively caudally, with only meager innervation after 6 cm. Cecal innervation consisted of a few fibers at the ileocecal junction. Duodenal and cecal endings were predominately IGLEs. These results indicate that the hepatic branch carries sensory information from the forestomach, antrum, pylorus, duodenum, and cecum. Furthermore, the different terminals it supplies suggest that the branch mediates a multiplicity of gastrointestinal functions. J. Comp. Neurol. 384:248‐270, 1997.


Anatomy and Embryology | 2002

Selective loss of vagal intramuscular mechanoreceptors in mice mutant for steel factor, the c-Kit receptor ligand

Edward A. Fox; Robert J. Phillips; Mardi S. Byerly; Elizabeth A. Baronowsky; Michael M. Chi; Terry L. Powley

Vagal intramuscular arrays are mechanoreceptors that innervate smooth muscle fibers and intramuscular interstitial cells of Cajal of the proximal GI tract. C-Kit mutant mice that lack intramuscular interstitial cells of Cajal also lack intramuscular arrays. Mice mutant for steel factor, the ligand for the c-Kit receptor, were studied to extend and validate these previous findings and to characterize associated changes in food intake. Injections of wheat germ agglutinin-horseradish peroxidase and of dextran into the nodose ganglion were employed to label intramuscular arrays and intraganglionic laminar endings, the other vagal mechanoreceptors found in the gut wall. These two receptor types were inventoried in wholemounts of the stomach and duodenum using a standardized sampling and quantification regime. Steel mutants exhibited a paucity of normal intramuscular arrays and lacked intramuscular interstitial cells of Cajal in the forestomach, whereas their intraganglionic laminar endings appeared normal in number, distribution, and morphology. These observations suggest that intramuscular array losses in steel and c-Kit mutants are specific and result from the elimination of the intramuscular interstitial cells of Cajal, the effect common to both mutations, not from interactions peculiar to background strains or non-specific effects. Double-labeling analyses of intramuscular arrays and intramuscular interstitial cells of Cajal reinforced the hypothesis based on previous findings in the c-Kit mice that these interstitial cells have a trophic effect on intramuscular array development and/or maintenance. Finally, meal pattern analyses revealed decreased meal size and increased meal frequency in steel mutants, with normal daily intake. These alterations suggest short-term feeding controls are affected by the loss of intramuscular arrays and/or intramuscular interstitial cells of Cajal, though long-term controls are unimpaired.


Anatomy and Embryology | 2001

C-Kit mutant mice have a selective loss of vagal intramuscular mechanoreceptors in the forestomach.

Edward A. Fox; Robert J. Phillips; Fred A. Martinson; Elizabeth A. Baronowsky; Terry L. Powley

Intramuscular arrays are one of two major classes of vagal afferent mechanoreceptors that innervate the smooth muscle wall of the proximal gastrointestinal tract. They consist of rectilinear telodendria that distribute in the muscle sheets, parallel to the long axes of muscle fibers. Intramuscular arrays appear to make direct contact with the muscle fibers, but they also course on, and form appositions with, intramuscular interstitial cells of Cajal. These complexes formed by intramuscular arrays and intramuscular interstitial cells of Cajal suggest that intramuscular arrays might require either structural or trophic support of the interstitial cells of Cajal for normal differentiation and/or maintenance. To evaluate this hypothesis, we have examined the morphology and distribution of vagal afferent endings in the c-Kit mutant mouse that lacks intramuscular interstitial cells of Cajal. Vagal afferents were labeled by nodose ganglion injection of either wheat germ agglutinin-horseradish peroxidase conjugate or a tagged dextran, and the labeled afferent terminals in the stomach were mapped using a standardized quantitative sampling scheme. Intramuscular arrays were dramatically reduced (in circular muscle by 63%; in longitudinal muscle by 78%) in the c-Kit mutant mice relative to their wild-type littermates. Additionally, a substantial number of the surviving axons and terminals in the mutant stomachs were morphologically aberrant. Moreover, the loss of intramuscular arrays in mutants appeared to be selective: the structure, distribution and density of intraganglionic laminar endings, i.e., the other vagal mechanoreceptors in smooth muscle, were not significantly altered. Finally, the conspicuous decrease in intramuscular array density in mutants was associated with a non-significant trend toward loss of nodose ganglion neurons. Collectively these findings suggest that interstitial cells are required for the normal development or maintenance of vagal intramuscular arrays. Therefore, the c-Kit mutant mouse will be valuable for determining the role(s) of interstitial cells in intramuscular array development as well as for providing an animal model with the intramuscular array class of vagal afferents selectively ablated.


Neurogastroenterology and Motility | 2007

Ultrastructural evidence for communication between intramuscular vagal mechanoreceptors and interstitial cells of Cajal in the rat fundus

T. L. Powley; Xuan-Yu Wang; Edward A. Fox; Robert J. Phillips; L. W. C. Liu; Jan D. Huizinga

Abstract  To assess whether afferent vagal intramuscular arrays (IMAs), putative gastrointestinal mechanoreceptors, form contacts with interstitial cells of Cajal of the intramuscular type (ICC‐IM) and to describe any such contacts, electron microscopic analyses were performed on the external muscle layers of the fundus containing dextran‐labelled diaminobenzidin (DAB)‐stained IMAs. Special staining and embedding techniques were developed to preserve ultrastructural features. Within the muscle layers, IMA varicosities were observed in nerve bundles traversing major septa without contact with ICC‐IM, contacting unlabelled neurites and glial cells. IMA varicosities were encountered in minor septa in contact with ICC‐IM which were not necessarily in close contact with muscle cells. In addition, IMA varicosities were observed within muscle bundles in close contact with ICC‐IM which were in gap junction contact with muscle cells. IMAs formed varicosities containing predominantly small agranular vesicles, occasionally large granular vesicles and prejunctional thickenings in apposition to ICC‐IM processes, indicating communication between ICC and IMA via synapse‐like contacts. Taken together, these different morphological features are consistent with a hypothesized mechanoreceptor role for IMA‐ICC complexes. Intraganglionic laminar ending varicosities contacted neuronal somata and dendrites in the myenteric plexus of the fundus, but no contacts with ICC associated with Auerbach’s plexus were encountered.


Neuroscience | 2011

Vagal intramuscular array afferents form complexes with interstitial cells of Cajal in gastrointestinal smooth muscle: analogues of muscle spindle organs?

Terry L. Powley; Robert J. Phillips

Intramuscular arrays (IMAs), vagal mechanoreceptors that innervate gastrointestinal smooth muscle, have not been completely described structurally or functionally. To delineate more fully the architecture of IMAs and to consider the structure-function implications of the observations, the present experiment examined the organization of the IMA terminal arbors and the accessory tissue elements of those arbors. IMA terminal fields, labeled by injection of biotinylated dextran into the nodose ganglia, were examined in whole mounts of rat gastric smooth muscle double-labeled with immunohistochemistry for interstitial cells of Cajal (ICCs; c-Kit) and/or inputs of different neuronal efferent transmitter (markers: tyrosine hydroxylase (TH), vesicular acetylcholine transporter (VAChT), and nitric oxide synthase (NOS)) or afferent neuropeptidergic (calcitonin gene-related peptide (CGRP)) phenotypes. IMAs make extensive varicose and lamellar contacts with ICCs. In addition, axons of the multiple efferent and afferent phenotypes examined converge and articulate with IMA terminal arbors innervating ICCs. This architecture is consistent with the hypothesis that IMAs, or the multiply innervated IMA-ICC complexes they form, can function as stretch receptors. The tissue organization is also consonant with the proposal that those units can operate as functional analogues of muscle spindle organs. For electrophysiological assessments of IMA functions, experiments will need protocols that preserve both the complex architecture and the dynamic operations of IMA-ICC complexes.

Collaboration


Dive into the Robert J. Phillips's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge