Robert J. Wenthold
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert J. Wenthold.
Nature | 2000
Lu Chen; Dane M. Chetkovich; Ronald S. Petralia; Neal T. Sweeney; Yoshimi Kawasaki; Robert J. Wenthold; David S. Bredt; Roger A. Nicoll
Stargazer, an ataxic and epileptic mutant mouse, lacks functional AMPA (α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate) receptors on cerebellar granule cells. Stargazin, the mutated protein, interacts with both AMPA receptor subunits and synaptic PDZ proteins, such as PSD-95. The interaction of stargazin with AMPA receptor subunits is essential for delivering functional receptors to the surface membrane of granule cells, whereas its binding with PSD-95 and related PDZ proteins through a carboxy-terminal PDZ-binding domain is required for targeting the AMPA receptor to synapses. Expression of a mutant stargazin lacking the PDZ-binding domain in hippocampal pyramidal cells disrupts synaptic AMPA receptors, indicating that stargazin-like mechanisms for targeting AMPA receptors may be widespread in the central nervous system.
Cell | 2003
Hey Kyoung Lee; Kogo Takamiya; Jung Soo Han; Heng-Ye Man; Chong Hyun Kim; Gavin Rumbaugh; Sandy Yu; Lin Ding; Chun He; Ronald S. Petralia; Robert J. Wenthold; Michela Gallagher; Richard L. Huganir
Plasticity of the nervous system is dependent on mechanisms that regulate the strength of synaptic transmission. Excitatory synapses in the brain undergo long-term potentiation (LTP) and long-term depression (LTD), cellular models of learning and memory. Protein phosphorylation is required for the induction of many forms of synaptic plasticity, including LTP and LTD. However, the critical kinase substrates that mediate plasticity have not been identified. We previously reported that phosphorylation of the GluR1 subunit of AMPA receptors, which mediate rapid excitatory transmission in the brain, is modulated during LTP and LTD. To test if GluR1 phosphorylation is necessary for plasticity and learning and memory, we generated mice with knockin mutations in the GluR1 phosphorylation sites. The phosphomutant mice show deficits in LTD and LTP and have memory defects in spatial learning tasks. These results demonstrate that phosphorylation of GluR1 is critical for LTD and LTP expression and the retention of memories.
Neuron | 1998
Bo Xiao; Jian Cheng Tu; Ronald S. Petralia; Joseph P. Yuan; Andrew Doan; Christopher D Breder; Alicia Ruggiero; Anthony Lanahan; Robert J. Wenthold; Paul F. Worley
Homer is a neuronal immediate early gene (IEG) that is enriched at excitatory synapses and binds group 1 metabotropic glutamate receptors (mGluRs). Here, we characterize a family of Homer-related proteins derived from three distinct genes. Like Homer IEG (now termed Homer 1a), all new members bind group 1 mGluRs. In contrast to Homer 1a, new members are constitutively expressed and encode a C-terminal coiled-coil (CC) domain that mediates self-multimerization. CC-Homers form natural complexes that cross-link mGluRs and are enriched at the postsynaptic density. Homer 1a does not multimerize and blocks the association of mGluRs with CC-Homer complexes. These observations support a model in which the dynamic expression of Homer 1a competes with constitutively expressed CC-Homers to modify synaptic mGluR properties.
The Journal of Neuroscience | 1994
Ronald S. Petralia; Ya-Xian Wang; Robert J. Wenthold
Neuronal plasticity associated with learning, memory and development is controlled, in part, by NMDA receptors, which are complexes consisting of the subunit NMDAR1 (NR1) and one or more NMDAR2 subunits (NR2A- NR2D). We made a polyclonal antibody to a C-terminus peptide of NR2A. In analysis of transfected cell membranes, this antibody recognizes NR2A and NR2B, and to a slight extent, NR2C and NR2D. In Western blots of rat brain, the antibody labeled a single band that comigrated with NR2A and NR2B. This antibody (NR2A/B) did not cross-react with extracts from transfected cells expressing other glutamate receptor subunits, nor did it label non-neuronal tissues. Immunostained sections of rat brain showed significant staining throughout the nervous system, including olfactory bulb, cerebral cortex, hippocampus, caudate- putamen, and many brainstem nuclei, as well as in neurons of spinal cord and sensory ganglia. This widespread distribution of staining was similar to that found with an antibody to NR1, supporting the presence of functional NR1/NR2 complexes throughout the nervous system. In the cerebellum, in contrast to staining with NR1 antibody, Purkinje cell staining with NR2A/B antibody was low, indicating that these neurons may lack functional NMDA receptors. EM examination revealed dense staining in dendrites and postsynaptic densities in cerebral cortex and hippocampus, similar to those seen with antibody to NR1. Since functional NMDA receptor complexes at synapses appear to require both NR1 and NR2 subunit proteins for full function, this study provides structural evidence for functional NR1/NR2 receptors in vivo in the nervous system.
Nature Neuroscience | 2001
Katherine W. Roche; Steve Standley; Jennifer McCallum; C. Dune Ly; Michael D. Ehlers; Robert J. Wenthold
Although synaptic AMPA receptors have been shown to rapidly internalize, synaptic NMDA receptors are reported to be static. It is not certain whether NMDA receptor stability at synaptic sites is an inherent property of the receptor, or is due to stabilization by scaffolding proteins. In this study, we demonstrate that NMDA receptors are internalized in both heterologous cells and neurons, and we define an internalization motif, YEKL, on the distal C-terminus of NR2B. In addition, we show that the synaptic protein PSD-95 inhibits NR2B-mediated internalization, and that deletion of the PDZ-binding domain of NR2B increases internalization in neurons. This suggests an involvement for PSD-95 in NMDA receptor regulation and an explanation for NMDA receptor stability at synaptic sites.
Journal of Cell Biology | 2003
Susumu Tomita; Lu Chen; Yoshimi Kawasaki; Ronald S. Petralia; Robert J. Wenthold; Roger A. Nicoll; David S. Bredt
Functional expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in cerebellar granule cells requires stargazin, a member of a large family of four-pass transmembrane proteins. Here, we define a family of transmembrane AMPA receptor regulatory proteins (TARPs), which comprise stargazin, γ-3, γ-4, and γ-8, but not related proteins, that mediate surface expression of AMPA receptors. TARPs exhibit discrete and complementary patterns of expression in both neurons and glia in the developing and mature central nervous system. In brain regions that express multiple isoforms, such as cerebral cortex, TARP–AMPA receptor complexes are strictly segregated, suggesting distinct roles for TARP isoforms. TARPs interact with AMPA receptors at the postsynaptic density, and surface expression of mature AMPA receptors requires a TARP. These studies indicate a general role for TARPs in controlling synaptic AMPA receptors throughout the central nervous system.
Neuroscience | 1987
Robert J. Wenthold; D. Huie; Richard A. Altschuler; K.A. Reeks
Polyclonal antibodies were made in rabbits against glycine conjugated to bovine serum albumin with glutaraldehyde and were used for immunocytochemical studies in the cochlear nucleus and superior olivary nucleus of the guinea-pig. Antibodies selective for glycine were prepared by affinity chromatography. By dot-blot analysis this preparation showed a strong recognition of glycine conjugates and relatively little recognition of conjugates of most other amino acids tested. However, there was a significant reaction with conjugates of alanine and beta-alanine, and this cross-reaction could not be removed by affinity chromatography without eliminating the preparations recognition of glycine. The affinity-purified preparation showed only a weak recognition of conjugates of gamma-aminobutyrate (GABA) which was detectable at high concentrations of primary antibody. Immunocytochemical studies showed several intensely staining cell bodies in the cochlear nucleus and superior olivary complex. Most immunoreactive cell bodies in the cochlear nucleus were in the dorsal cochlear nucleus, being present in both the superficial and deep layers. Scattered immunoreactive cells were present in the ventral cochlear nucleus. Intense staining of cell bodies was seen in the medial nucleus of the trapezoid body, and these cells appear to correspond to the principal cells of that nucleus. Punctate labelling, suggestive of immunoreactive presynaptic terminals, was also apparent, particularly in the ventral cochlear nucleus and lateral superior olive. In the ventral cochlear nucleus, immunoreactive puncta were found around unlabeled cell bodies, at times nearly covering the perimeter of the cell. A population of glycine-immunoreactive cell bodies in the superficial dorsal cochlear nucleus also labeled with anti-GABA antibodies as determined through double-labeling studies. However, glycine-positive cells in the deep dorsal cochlear nucleus were not labeled with anti-GABA antibodies, and some populations of GABA-positive cells in the superficial layers were not labeled with anti-glycine antibodies. In the hippocampus intense staining of cell bodies and puncta was seen with anti-GABA antibodies while essentially no staining was seen with anti-glycine antibodies. These results suggest that anti-glycine antibodies can be useful for immunocytochemical identification of glycinergic neurons. From this study several populations of putative glycinergic neurons are identified in the auditory nuclei of the brain stem using these antibodies. Some populations of GABA-containing neurons also contain high levels of glycine or a related molecule.
Neuron | 2005
Kate Prybylowski; Kai Chang; Nathalie Sans; Lilly Kan; Stefano Vicini; Robert J. Wenthold
The NMDA receptor (NMDAR) is a component of excitatory synapses and a key participant in synaptic plasticity. We investigated the role of two domains in the C terminus of the NR2B subunit--the PDZ binding domain and the clathrin adaptor protein (AP-2) binding motif--in the synaptic localization of NMDA receptors. NR2B subunits lacking functional PDZ binding are excluded from the synapse. Mutations in the AP-2 binding motif, YEKL, significantly increase the number of synaptic receptors and allow the synaptic localization of NR2B subunits lacking PDZ binding. Peptides corresponding to YEKL increase the synaptic response within minutes. In contrast, the NR2A subunit localizes to the synapse in the absence of PDZ binding and is not altered by mutations in its motif corresponding to YEKL of NR2B. This study identifies a dynamic regulation of synaptic NR2B-containing NMDARs through PDZ protein-mediated stabilization and AP-2-mediated internalization that is modulated by phosphorylation by Fyn kinase.
Nature Cell Biology | 2003
Nathalie Sans; Kate Prybylowski; Ronald S. Petralia; Kai Chang; Ya-Xian Wang; Claudia Racca; Stefano Vicini; Robert J. Wenthold
NMDA (N-methyl-D-aspartate) receptors (NMDARs) are targeted to dendrites and anchored at the post-synaptic density (PSD) through interactions with PDZ proteins. However, little is known about how these receptors are sorted from the endoplasmic reticulum and Golgi apparatus to the synapse. Here, we find that synapse-associated protein 102 (SAP102) interacts with the PDZ-binding domain of Sec8, a member of the exocyst complex. Our results show that interactions between SAP102 and Sec8 are involved in the delivery of NMDARs to the cell surface in heterologous cells and neurons. Furthermore, they suggest that an exocyst–SAP102–NMDAR complex is an important component of NMDAR trafficking.
The Journal of Neuroscience | 2006
Mireille Montcouquiol; Nathalie Sans; David Huss; Jacob Kach; J. David Dickman; Andrew Forge; Rivka A. Rachel; Neal G. Copeland; Nancy A. Jenkins; Debora Bogani; Jennifer N. Murdoch; Mark E. Warchol; Robert J. Wenthold; Matthew W. Kelley
Planar cell polarity (PCP) is a process in which cells develop with uniform orientation within the plane of an epithelium. To begin to elucidate the mechanisms of PCP in vertebrates, the localization of the protein Vangl2 (Van Gogh-like) was determined during the development of the mammalian cochlea. Results indicate that Vangl2 becomes asymmetrically localized to specific cell–cell boundaries along the axis of polarization and that this asymmetry is lost in PCP mutants. In addition, PDZ2 (postsynaptic density/Discs large/zona occludens 1), PDZ3, and PDZ4 of the PCP protein Scrb1 (Scribble) are shown to bind to the C-terminal PDZ binding domain of Vangl2, suggesting that Scrb1 plays a direct role in asymmetric targeting of Vangl2. Finally, Fz3 (Frizzled), a newly demonstrated mediator of PCP, is also asymmetrically localized in a pattern that matches that of Vangl2. The presence and asymmetry of Fz3 at the membrane is shown to be dependent on Vangl2. This result suggests a role for Vangl2 in the targeting or anchoring of Fz3, a hypothesis strengthened by the existence of a physical interaction between the two proteins. Together, our data support the idea that protein asymmetry plays an important role in the development of PCP, but the colocalization and interaction of Fz3 and Vangl2 suggests that novel PCP mechanisms exist in vertebrates.