Robert Kopajtich
Technische Universität München
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert Kopajtich.
American Journal of Human Genetics | 2014
Robert Kopajtich; Thomas J. Nicholls; Joanna Rorbach; Metodi D. Metodiev; Peter Freisinger; Hanna Mandel; Arnaud Vanlander; Daniele Ghezzi; Rosalba Carrozzo; Robert W. Taylor; Klaus Marquard; Kei Murayama; Thomas Wieland; Thomas Schwarzmayr; Johannes A. Mayr; Sarah F. Pearce; Christopher A. Powell; Ann Saada; Akira Ohtake; Federica Invernizzi; Eleonora Lamantea; Ewen W. Sommerville; Angela Pyle; Patrick F. Chinnery; Ellen Crushell; Yasushi Okazaki; Masakazu Kohda; Yoshihito Kishita; Yoshimi Tokuzawa; Zahra Assouline
Respiratory chain deficiencies exhibit a wide variety of clinical phenotypes resulting from defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mtDNA or mutations in nuclear genes coding for mitochondrial proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial physiology. By whole-exome and candidate gene sequencing, we identified 11 individuals from 9 families carrying compound heterozygous or homozygous mutations in GTPBP3, encoding the mitochondrial GTP-binding protein 3. Affected individuals from eight out of nine families presented with combined respiratory chain complex deficiencies in skeletal muscle. Mutations in GTPBP3 are associated with a severe mitochondrial translation defect, consistent with the predicted function of the protein in catalyzing the formation of 5-taurinomethyluridine (τm(5)U) in the anticodon wobble position of five mitochondrial tRNAs. All case subjects presented with lactic acidosis and nine developed hypertrophic cardiomyopathy. In contrast to individuals with mutations in MTO1, the protein product of which is predicted to participate in the generation of the same modification, most individuals with GTPBP3 mutations developed neurological symptoms and MRI involvement of thalamus, putamen, and brainstem resembling Leigh syndrome. Our study of a mitochondrial translation disorder points toward the importance of posttranscriptional modification of mitochondrial tRNAs for proper mitochondrial function.
Human Mutation | 2013
Enrico Baruffini; Cristina Dallabona; Federica Invernizzi; John W. Yarham; Laura Melchionda; Emma L. Blakely; Eleonora Lamantea; Claudia Donnini; Saikat Santra; Suresh Vijayaraghavan; Helen Roper; Alberto Burlina; Robert Kopajtich; Anett Walther; Tim M. Strom; Tobias B. Haack; Holger Prokisch; Robert W. Taylor; Ileana Ferrero; Massimo Zeviani; Daniele Ghezzi
We report three families presenting with hypertrophic cardiomyopathy, lactic acidosis, and multiple defects of mitochondrial respiratory chain (MRC) activities. By direct sequencing of the candidate gene MTO1, encoding the mitochondrial‐tRNA modifier 1, or whole exome sequencing analysis, we identified novel missense mutations. All MTO1 mutations were predicted to be deleterious on MTO1 function. Their pathogenic role was experimentally validated in a recombinant yeast model, by assessing oxidative growth, respiratory activity, mitochondrial protein synthesis, and complex IV activity. In one case, we also demonstrated that expression of wt MTO1 could rescue the respiratory defect in mutant fibroblasts. The severity of the yeast respiratory phenotypes partly correlated with the different clinical presentations observed in MTO1 mutant patients, although the clinical outcome was highly variable in patients with the same mutation and seemed also to depend on timely start of pharmacological treatment, centered on the control of lactic acidosis by dichloroacetate. Our results indicate that MTO1 mutations are commonly associated with a presentation of hypertrophic cardiomyopathy, lactic acidosis, and MRC deficiency, and that ad hoc recombinant yeast models represent a useful system to test the pathogenic potential of uncommon variants, and provide insight into their effects on the expression of a biochemical phenotype.
Nature Communications | 2017
Laura S. Kremer; Daniel Magnus Bader; Christian Mertes; Robert Kopajtich; Garwin Pichler; Arcangela Iuso; Tobias B. Haack; Elisabeth Graf; Thomas Schwarzmayr; Caterina Terrile; Eliška Koňaříková; Birgit Repp; Gabi Kastenmüller; Jerzy Adamski; Peter Lichtner; Christoph Leonhardt; Benoit Funalot; Alice Donati; Valeria Tiranti; Anne Lombès; Claude Jardel; Dieter Gläser; Robert W. Taylor; Daniele Ghezzi; Johannes A. Mayr; Agnès Rötig; Peter Freisinger; Felix Distelmaier; Tim M. Strom; Thomas Meitinger
Across a variety of Mendelian disorders, ∼50–75% of patients do not receive a genetic diagnosis by exome sequencing indicating disease-causing variants in non-coding regions. Although genome sequencing in principle reveals all genetic variants, their sizeable number and poorer annotation make prioritization challenging. Here, we demonstrate the power of transcriptome sequencing to molecularly diagnose 10% (5 of 48) of mitochondriopathy patients and identify candidate genes for the remainder. We find a median of one aberrantly expressed gene, five aberrant splicing events and six mono-allelically expressed rare variants in patient-derived fibroblasts and establish disease-causing roles for each kind. Private exons often arise from cryptic splice sites providing an important clue for variant prioritization. One such event is found in the complex I assembly factor TIMMDC1 establishing a novel disease-associated gene. In conclusion, our study expands the diagnostic tools for detecting non-exonic variants and provides examples of intronic loss-of-function variants with pathological relevance.
American Journal of Human Genetics | 2014
Matthis Synofzik; Tobias B. Haack; Robert Kopajtich; Matteo Gorza; Doron Rapaport; Markus Greiner; Caroline Schönfeld; Clemens Freiberg; Stefan Schorr; Reinhard W. Holl; Michael Gonzalez; Andreas Fritsche; Petra Fallier-Becker; Richard Zimmermann; Tim M. Strom; Thomas Meitinger; Stephan Züchner; Rebecca Schüle; Ludger Schöls; Holger Prokisch
Diabetes mellitus and neurodegeneration are common diseases for which shared genetic factors are still only partly known. Here, we show that loss of the BiP (immunoglobulin heavy-chain binding protein) co-chaperone DNAJC3 leads to diabetes mellitus and widespread neurodegeneration. We investigated three siblings with juvenile-onset diabetes and central and peripheral neurodegeneration, including ataxia, upper-motor-neuron damage, peripheral neuropathy, hearing loss, and cerebral atrophy. Exome sequencing identified a homozygous stop mutation in DNAJC3. Screening of a diabetes database with 226,194 individuals yielded eight phenotypically similar individuals and one family carrying a homozygous DNAJC3 deletion. DNAJC3 was absent in fibroblasts from all affected subjects in both families. To delineate the phenotypic and mutational spectrum and the genetic variability of DNAJC3, we analyzed 8,603 exomes, including 506 from families affected by diabetes, ataxia, upper-motor-neuron damage, peripheral neuropathy, or hearing loss. This analysis revealed only one further loss-of-function allele in DNAJC3 and no further associations in subjects with only a subset of the features of the main phenotype. Our findings demonstrate that loss-of-function DNAJC3 mutations lead to a monogenic, recessive form of diabetes mellitus in humans. Moreover, they present a common denominator for diabetes and widespread neurodegeneration. This complements findings from mice in which knockout of Dnajc3 leads to diabetes and modifies disease in a neurodegenerative model of Marinesco-Sjögren syndrome.
American Journal of Human Genetics | 2015
Christopher A. Powell; Robert Kopajtich; Aaron R. D'Souza; Joanna Rorbach; Laura S. Kremer; Ralf A. Husain; Cristina Dallabona; Claudia Donnini; Charlotte L. Alston; Helen Griffin; Angela Pyle; Patrick F. Chinnery; Tim M. Strom; Thomas Meitinger; Richard J. Rodenburg; Gudrun Schottmann; Markus Schuelke; Nadine Romain; Ronald G. Haller; Ileana Ferrero; Tobias B. Haack; Robert W. Taylor; Holger Prokisch; Michal Minczuk
Deficiencies in respiratory-chain complexes lead to a variety of clinical phenotypes resulting from inadequate energy production by the mitochondrial oxidative phosphorylation system. Defective expression of mtDNA-encoded genes, caused by mutations in either the mitochondrial or nuclear genome, represents a rapidly growing group of human disorders. By whole-exome sequencing, we identified two unrelated individuals carrying compound heterozygous variants in TRMT5 (tRNA methyltransferase 5). TRMT5 encodes a mitochondrial protein with strong homology to members of the class I-like methyltransferase superfamily. Both affected individuals presented with lactic acidosis and evidence of multiple mitochondrial respiratory-chain-complex deficiencies in skeletal muscle, although the clinical presentation of the two affected subjects was remarkably different; one presented in childhood with failure to thrive and hypertrophic cardiomyopathy, and the other was an adult with a life-long history of exercise intolerance. Mutations in TRMT5 were associated with the hypomodification of a guanosine residue at position 37 (G37) of mitochondrial tRNA; this hypomodification was particularly prominent in skeletal muscle. Deficiency of the G37 modification was also detected in human cells subjected to TRMT5 RNAi. The pathogenicity of the detected variants was further confirmed in a heterologous yeast model and by the rescue of the molecular phenotype after re-expression of wild-type TRMT5 cDNA in cells derived from the affected individuals. Our study highlights the importance of post-transcriptional modification of mitochondrial tRNAs for faithful mitochondrial function.
American Journal of Human Genetics | 2016
Robert Kopajtich; Kei Murayama; Andreas R. Janecke; Tobias B. Haack; Maximilian Breuer; A.S. Knisely; Inga Harting; Toya Ohashi; Yasushi Okazaki; Daisaku Watanabe; Yoshimi Tokuzawa; Urania Kotzaeridou; Stefan Kölker; Sven W. Sauer; Matthias Carl; Simon Straub; Andreas Entenmann; Elke R. Gizewski; René G. Feichtinger; Johannes A. Mayr; Karoline Lackner; Tim M. Strom; Thomas Meitinger; Thomas Müller; Akira Ohtake; Georg F. Hoffmann; Holger Prokisch; Christian Staufner
tRNA synthetase deficiencies are a growing group of genetic diseases associated with tissue-specific, mostly neurological, phenotypes. In cattle, cytosolic isoleucyl-tRNA synthetase (IARS) missense mutations cause hereditary weak calf syndrome. Exome sequencing in three unrelated individuals with severe prenatal-onset growth retardation, intellectual disability, and muscular hypotonia revealed biallelic mutations in IARS. Studies in yeast confirmed the pathogenicity of identified mutations. Two of the individuals had infantile hepatopathy with fibrosis and steatosis, leading in one to liver failure in the course of infections. Zinc deficiency was present in all affected individuals and supplementation with zinc showed a beneficial effect on growth in one.
Human Mutation | 2017
Saskia B. Wortmann; Sharita Timal; Hanka Venselaar; Liesbeth T. Wintjes; Robert Kopajtich; René G. Feichtinger; Carla Onnekink; Mareike Mühlmeister; Ulrich Brandt; Jan A.M. Smeitink; Joris A. Veltman; Wolfgang Sperl; Dirk J. Lefeber; Ger J. M. Pruijn; Vesna Stojanovic; Peter Freisinger; Francjan von Spronsen; Terry G. J. Derks; Hermine E. Veenstra-Knol; Johannes A. Mayr; Agnès Rötig; Mark A. Tarnopolsky; Holger Prokisch; Richard J. Rodenburg
Mitochondrial protein synthesis involves an intricate interplay between mitochondrial DNA encoded RNAs and nuclear DNA encoded proteins, such as ribosomal proteins and aminoacyl‐tRNA synthases. Eukaryotic cells contain 17 mitochondria‐specific aminoacyl‐tRNA synthases. WARS2 encodes mitochondrial tryptophanyl‐tRNA synthase (mtTrpRS), a homodimeric class Ic enzyme (mitochondrial tryptophan‐tRNA ligase; EC 6.1.1.2). Here, we report six individuals from five families presenting with either severe neonatal onset lactic acidosis, encephalomyopathy and early death or a later onset, more attenuated course of disease with predominating intellectual disability. Respiratory chain enzymes were usually normal in muscle and fibroblasts, while a severe combined respiratory chain deficiency was found in the liver of a severely affected individual. Exome sequencing revealed rare biallelic variants in WARS2 in all affected individuals. An increase of uncharged mitochondrial tRNATrp and a decrease of mtTrpRS protein content were found in fibroblasts of affected individuals. We hereby define the clinical, neuroradiological, and metabolic phenotype of WARS2 defects. This confidently implicates that mutations in WARS2 cause mitochondrial disease with a broad spectrum of clinical presentation.
American Journal of Human Genetics | 2016
Hannah L. Kennedy; Tobias B. Haack; Verity L Hartill; Lavinija Mataković; E. Regula Baumgartner; Howard C. Potter; Richard Mackay; Charlotte L. Alston; Siobhan O’Sullivan; Robert McFarland; Grainne Connolly; Caroline Gannon; Richard A. King; Scott Mead; Ian Crozier; W. Chan; Chris M. Florkowski; Martin Sage; Thomas Höfken; Bader Alhaddad; Laura S. Kremer; Robert Kopajtich; René G. Feichtinger; Wolfgang Sperl; Richard J. Rodenburg; Jean Claude Minet; Angus Dobbie; Tim M. Strom; Thomas Meitinger; Peter M. George
We have used whole-exome sequencing in ten individuals from four unrelated pedigrees to identify biallelic missense mutations in the nuclear-encoded mitochondrial inorganic pyrophosphatase (PPA2) that are associated with mitochondrial disease. These individuals show a range of severity, indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe symptoms include seizures, lactic acidosis, cardiac arrhythmia, and death within days of birth. In the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. Comparison of normal and mutant PPA2-containing mitochondria from fibroblasts showed that the activity of inorganic pyrophosphatase was significantly reduced in affected individuals. Recombinant PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated with disease severity. These findings confirm the pathogenicity of PPA2 mutations and suggest that PPA2 is a cardiomyopathy-associated protein, which has a greater physiological importance in mitochondrial function than previously recognized.
American Journal of Human Genetics | 2018
Zhiwen Xu; Wing-Sze Lo; David B. Beck; Luise A. Schuch; Monika Oláhová; Robert Kopajtich; Yeeting E. Chong; Charlotte L. Alston; Elias Seidl; Liting Zhai; Ching-Fun Lau; Donna Timchak; Charles A. LeDuc; Alain C. Borczuk; Andrew F. Teich; Jane Juusola; Christina Sofeso; Christoph Müller; Germaine Pierre; Tom N. Hilliard; Peter D. Turnpenny; Matias Wagner; Matthias Kappler; Frank Brasch; John Paul Bouffard; Leslie A. Nangle; Xiang-Lei Yang; Mingjie Zhang; Robert W. Taylor; Holger Prokisch
The tRNA synthetases catalyze the first step of protein synthesis and have increasingly been studied for their nuclear and extra-cellular ex-translational activities. Human genetic conditions such as Charcot-Marie-Tooth have been attributed to dominant gain-of-function mutations in some tRNA synthetases. Unlike dominantly inherited gain-of-function mutations, recessive loss-of-function mutations can potentially elucidate ex-translational activities. We present here five individuals from four families with a multi-system disease associated with bi-allelic mutations in FARSB that encodes the beta chain of the alpha2beta2 phenylalanine-tRNA synthetase (FARS). Collectively, the mutant alleles encompass a 5′-splice junction non-coding variant (SJV) and six missense variants, one of which is shared by unrelated individuals. The clinical condition is characterized by interstitial lung disease, cerebral aneurysms and brain calcifications, and cirrhosis. For the SJV, we confirmed exon skipping leading to a frameshift associated with noncatalytic activity. While the bi-allelic combination of the SJV with a p.Arg305Gln missense mutation in two individuals led to severe disease, cells from neither the asymptomatic heterozygous carriers nor the compound heterozygous affected individual had any defect in protein synthesis. These results support a disease mechanism independent of tRNA synthetase activities in protein translation and suggest that this FARS activity is essential for normal function in multiple organs.
American Journal of Human Genetics | 2017
René G. Feichtinger; Monika Oláhová; Yoshihito Kishita; Caterina Garone; Laura S. Kremer; Mikako Yagi; Takeshi Uchiumi; Alexis A. Jourdain; Kyle Thompson; Aaron R. D'Souza; Robert Kopajtich; Charlotte L. Alston; Johannes Koch; Wolfgang Sperl; Elisa Mastantuono; Tim M. Strom; Saskia B. Wortmann; Thomas Meitinger; Germaine Pierre; Patrick F. Chinnery; Zofia M.A. Chrzanowska-Lightowlers; Robert N. Lightowlers; Salvatore DiMauro; Sarah E. Calvo; Vamsi K. Mootha; Maurizio Moggio; Monica Sciacco; Giacomo P. Comi; Dario Ronchi; Kei Murayama
Complement component 1 Q subcomponent-binding protein (C1QBP; also known as p32) is a multi-compartmental protein whose precise function remains unknown. It is an evolutionary conserved multifunctional protein localized primarily in the mitochondrial matrix and has roles in inflammation and infection processes, mitochondrial ribosome biogenesis, and regulation of apoptosis and nuclear transcription. It has an N-terminal mitochondrial targeting peptide that is proteolytically processed after import into the mitochondrial matrix, where it forms a homotrimeric complex organized in a doughnut-shaped structure. Although C1QBP has been reported to exert pleiotropic effects on many cellular processes, we report here four individuals from unrelated families where biallelic mutations in C1QBP cause a defect in mitochondrial energy metabolism. Infants presented with cardiomyopathy accompanied by multisystemic involvement (liver, kidney, and brain), and children and adults presented with myopathy and progressive external ophthalmoplegia. Multiple mitochondrial respiratory-chain defects, associated with the accumulation of multiple deletions of mitochondrial DNA in the later-onset myopathic cases, were identified in all affected individuals. Steady-state C1QBP levels were decreased in all individuals’ samples, leading to combined respiratory-chain enzyme deficiency of complexes I, III, and IV. C1qbp−/− mouse embryonic fibroblasts (MEFs) resembled the human disease phenotype by showing multiple defects in oxidative phosphorylation (OXPHOS). Complementation with wild-type, but not mutagenized, C1qbp restored OXPHOS protein levels and mitochondrial enzyme activities in C1qbp−/− MEFs. C1QBP deficiency represents an important mitochondrial disorder associated with a clinical spectrum ranging from infantile lactic acidosis to childhood (cardio)myopathy and late-onset progressive external ophthalmoplegia.