Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert L. Walsky is active.

Publication


Featured researches published by Robert L. Walsky.


Drug Metabolism and Disposition | 2006

Mechanism-Based Inactivation of Human Cytochrome P450 Enzymes and the Prediction of Drug-Drug Interactions

R. Scott Obach; Robert L. Walsky; Karthik Venkatakrishnan

The ability to use vitro inactivation kinetic parameters in scaling to in vivo drug-drug interactions (DDIs) for mechanism-based inactivators of human cytochrome P450 (P450) enzymes was examined using eight human P450-selective marker activities in pooled human liver microsomes. These data were combined with other parameters (systemic Cmax, estimated hepatic inlet Cmax, fraction unbound, in vivo P450 enzyme degradation rate constants estimated from clinical pharmacokinetic data, and fraction of the affected drug cleared by the inhibited enzyme) to predict increases in exposure to drugs, and the predictions were compared with in vivo DDIs gathered from clinical studies reported in the scientific literature. In general, the use of unbound systemic Cmax as the inactivator concentration in vivo yielded the most accurate predictions of DDI with a mean -fold error of 1.64. Abbreviated in vitro approaches to identifying mechanism-based inactivators were developed. Testing potential inactivators at a single concentration (IC25) in a 30-min preincubation with human liver microsomes in the absence and presence of NADPH followed by assessment of P450 marker activities readily identified those compounds known to be mechanism-based inactivators and represents an approach that can be used with greater throughput. Measurement of decreases in IC50 occurring with a 30-min preincubation with liver microsomes and NADPH was also useful in identifying mechanism-based inactivators, and the IC50 measured after such a preincubation was highly correlated with the kinact/KI ratio measured after a full characterization of inactivation. Overall, these findings support the conclusion that P450 in vitro inactivation data are valuable in predicting clinical DDIs that can occur via this mechanism.


The Journal of Clinical Pharmacology | 2005

Examination of 209 drugs for inhibition of cytochrome P450 2C8.

Robert L. Walsky; Emily A. Gaman; R. Scott Obach

Cytochrome P450 2C8 is involved in the metabolism of drugs such as paclitaxel, repaglinide, rosiglitazone, and cerivastatin, among others. An in vitro assessment of 209 frequently prescribed drugs and related xenobiotics was carried out to examine their potential to inhibit CYP2C8. A validated sensitive, moderate‐throughput high‐performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) assay was used to detect N‐desethylamodiaquine, the CYP2C8‐derived major metabolite of amodiaquine metabolism, using heterologously expressed recombinant CYP2C8 (rhCYP2C8) and pooled human liver microsomes. The 209 drugs were first tested at 30 μM for their ability to inhibit rhCYP2C8. Forty‐eight compounds exhibited greater than 50% inhibition and were further evaluated for measurement of IC50. The six most potent inhibitors (IC50 <1 μM) from this set were measured for IC50 in pooled human liver microsomes, and the most potent inhibitor identified was the leukotriene receptor antagonist, montelukast (IC50 = 19.6 nM). Inhibitors of CYP2C8 were identified from a wide variety of therapeutic classes, with no single class predominating. Other potent inhibitors included candesartan cilexetil (cyclohexylcarbonate ester prodrug of candesartan), zafirlukast, clotrimazole, felodipine, and mometasone furoate. Seventeen moderate inhibitors of rhCYP2C8 (1 < IC50 < 10 μM) included salmeterol, raloxifene, fenofibrate, ritonavir, levothyroxine, tamoxifen, loratadine, quercetin, oxybutynin, medroxyprogesterone, simvastatin, ketoconazole, ethinyl estradiol, spironolactone, lovastatin, nifedipine, and irbesartan. These in vitro data were used along with clinical pharmacokinetic information in predicting potential drug‐drug interactions that could occur by inhibition of CYP2C8. Although almost all drugs tested are not expected to cause drug interactions via inhibition of CYP2C8, montelukast was identified as being of concern as a potential inhibitor of clinical relevance. These findings are discussed in context to potential drug interactions that could be observed between these agents and drugs for which CYP2C8 is involved in metabolism and warrant investigation of the possibility of clinical drug interactions mediated by inhibition of this enzyme.


Clinical Pharmacology & Therapeutics | 2005

In vitro cytochrome P450 inhibition data and the prediction of drug‐drug interactions: Qualitative relationships, quantitative predictions, and the rank‐order approach

R. Scott Obach; Robert L. Walsky; Karthik Venkatakrishnan; J. Brian Houston; Larry M. Tremaine

q s Drug-drug interactions (DDIs) represent a serious roblem in clinical practice. However, with knowledge ained over the past 15 years on the human drugetabolizing enzymes, a better understanding of the nderlying mechanisms behind many of the pharmacoinetic DDIs has been obtained. Previously, studies of DIs for new drugs were carried out empirically or ere gained through random clinical observations. In he past combinations of drugs chosen for investigation f DDIs were selected on the basis of the potential for ntroduction of toxicity of a drug with a narrow theraeutic index (eg, digoxin, theophylline, and warfarin) r if there was frequent coprescription with another gent for a given condition. However, with an increased nderstanding of drug-metabolizing enzymes and their oles in the metabolism of specific drugs, it is possible o apply a more mechanistic approach to assessing DIs. In particular, the possibility of extrapolation of esults of clinical DDI studies with 1 drug known to be leared by a particular drug-metabolizing enzyme to ther drugs that are cleared by that same enzyme is ttractive.


The Journal of Clinical Pharmacology | 2006

Evaluation of 227 Drugs for In Vitro Inhibition of Cytochrome P450 2B6

Robert L. Walsky; Angela V. Astuccio; R. Scott Obach

Cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of drugs such as bupropion, efavirenz, propofol, and selegiline, among others. More than 200 commonly prescribed drugs and other xenobiotics were examined for their ability to inhibit CYP2B6‐mediated bupropion hydroxylase activity. Thirty compounds were found exhibiting greater than 50% inhibition at 30 μM. Inhibitors of CYP2B6 were identified from a wide variety of therapeutic classes. The 2 platelet aggregation inhibitors, clopidogrel and ticlopidine, were both identified as potent inhibitors (IC50 = 0.0206 and 0.149 μM, respectively). Other inhibitors (IC50 < 1 μM) included clotrimazole, itraconazole, sertraline, and raloxifene. These in vitro data were used along with clinical pharmacokinetic information in the prediction of potential drug‐drug interactions that could occur by inhibition of CYP2B6. Although few drugs tested are expected to cause drug interactions, clopidogrel and ticlopidine were identified as being of concern as potential inhibitors of clinical relevance. These findings are discussed in context to potential drug interactions that could be observed between these agents and drugs for which CYP2B6 is involved in metabolism.


Drug Metabolism and Disposition | 2012

Optimized Assays for Human UDP-Glucuronosyltransferase (UGT) Activities: Altered Alamethicin Concentration and Utility to Screen for UGT Inhibitors

Robert L. Walsky; Jonathan N. Bauman; Bourcier K; Giddens G; Lapham K; Negahban A; Ryder Tf; Obach Rs; Ruth Hyland; Theunis C. Goosen

The measurement of the effect of new chemical entities on human UDP-glucuronosyltransferase (UGT) marker activities using in vitro experimentation represents an important experimental approach in drug development to guide clinical drug-interaction study designs or support claims that no in vivo interaction will occur. Selective high-performance liquid chromatography-tandem mass spectrometry functional assays of authentic glucuronides for five major hepatic UGT probe substrates were developed: β-estradiol-3-glucuronide (UGT1A1), trifluoperazine-N-glucuronide (UGT1A4), 5-hydroxytryptophol-O-glucuronide (UGT1A6), propofol-O-glucuronide (UGT1A9), and zidovudine-5′-glucuronide (UGT2B7). High analytical sensitivity permitted characterization of enzyme kinetic parameters at low human liver microsomal and recombinant UGT protein concentration (0.025 mg/ml), which led to a new recommended optimal universal alamethicin activation concentration of 10 μg/ml for microsomes. Alamethicin was not required for recombinant UGT incubations. Apparent enzyme kinetic parameters, particularly for UGT1A1 and UGT1A4, were affected by nonspecific binding. Unbound intrinsic clearance for UGT1A9 and UGT2B7 increased significantly after addition of 2% bovine serum albumin, with minimal changes for UGT1A1, UGT1A4, and UGT1A6. Eleven potential UGT and cytochrome P450 inhibitors were evaluated as UGT inhibitors, resulting in observation of nonselective UGT inhibition by chrysin, mefenamic acid, silibinin, tangeretin, ketoconazole, itraconazole, ritonavir, and verapamil. The pan-cytochrome P450 inhibitor, 1-aminobenzotriazole, minimally inhibited UGT activities and may be useful in reaction phenotyping of mixed UGT and cytochrome P450 substrates. These methods should prove useful in the routine assessments of the potential for new drug candidates to elicit pharmacokinetic drug interactions via inhibition of human UGT activities and the identification of UGT enzyme-selective chemical inhibitors.


Drug Metabolism and Disposition | 2008

Comparison of the Bioactivation Potential of the Antidepressant and Hepatotoxin Nefazodone with Aripiprazole, a Structural Analog and Marketed Drug

Jonathan N. Bauman; Kosea S. Frederick; Aarti Sawant; Robert L. Walsky; Loretta M. Cox; Obach Rs; Amit S. Kalgutkar

In vitro metabolism/bioactivation of structurally related central nervous system agents nefazodone (hepatotoxin) and aripiprazole (nonhepatotoxin) were undertaken in human liver microsomes in an attempt to understand the differences in toxicological profile. NADPH-supplemented microsomal incubations of nefazodone and glutathione generated conjugates derived from addition of thiol to quinonoid intermediates. Inclusion of cyanide afforded cyano conjugates to iminium ions derived from α-carbon oxidation of the piperazine ring in nefazodone and downstream metabolites. Although the arylpiperazine motif in aripiprazole did not succumb to bioactivation, the dihydroquinolinone group was bioactivated via an intermediate monohydroxy metabolite to a reactive species, which was trapped by glutathione. Studies with synthetic dehydroaripiprazole metabolite revealed an analogous glutathione conjugate with molecular weight 2 Da lower. Based on the proposed structure of the glutathione conjugate(s), a bioactivation sequence involving aromatic ortho-or para-hydroxylation on the quinolinone followed by oxidation to a quinone-imine was proposed. P4503A4 inactivation studies in microsomes indicated that, unlike nefazodone, aripiprazole was not a time- and concentration-dependent inactivator of the enzyme. Overall, these studies reinforce the notion that not all drugs that are bioactivated in vitro elicit a toxicological response in vivo. A likely explanation for the markedly improved safety profile of aripiprazole (versus nefazodone) despite the accompanying bioactivation liability is the vastly improved pharmacokinetics (enhanced oral bioavailability, longer elimination half-life) due to reduced P4503A4-mediated metabolism/bioactivation, which result in a lower daily dose (5–20 mg/day) compared with nefazodone (200–400 mg/day). This attribute probably reduces the total body burden to reactive metabolite exposure and may not exceed a threshold needed for toxicity.


Drug Metabolism and Disposition | 2012

Selective Mechanism-Based Inactivation of CYP3A4 by CYP3cide (PF-04981517) and Its Utility as an In Vitro Tool for Delineating the Relative Roles of CYP3A4 versus CYP3A5 in the Metabolism of Drugs

Robert L. Walsky; Obach Rs; Ruth Hyland; Ping Kang; Sue Zhou; Mike West; Kieran F Geoghegan; Christopher J Helal; Gregory S. Walker; Theunis C. Goosen; Michael Zientek

CYP3cide (PF-4981517; 1-methyl-3-[1-methyl-5-(4-methylphenyl)-1H-pyrazol-4-yl]-4-[(3S)-3-piperidin-1-ylpyrrolidin-1-yl]-1H-pyrazolo[3,4-d]pyrimidine) is a potent, efficient, and specific time-dependent inactivator of human CYP3A4. When investigating its inhibitory properties, an extreme metabolic inactivation efficiency (kinact/KI) of 3300 to 3800 ml · min−1 · μmol−1 was observed using human liver microsomes from donors of nonfunctioning CYP3A5 (CYP3A5 *3/*3). This observed efficiency equated to an apparent KI between 420 and 480 nM with a maximal inactivation rate (kinact) equal to 1.6 min−1. Similar results were achieved with testosterone, another CYP3A substrate, and other sources of the CYP3A4 enzyme. To further illustrate the abilities of CYP3cide, its partition ratio of inactivation was determined with recombinant CYP3A4. These studies produced a partition ratio approaching unity, thus underscoring the inactivation capacity of CYP3cide. When CYP3cide was tested at a concentration and preincubation time to completely inhibit CYP3A4 in a library of genotyped polymorphic CYP3A5 microsomes, the correlation of the remaining midazolam 1′-hydroxylase activity to CYP3A5 abundance was significant (R2 value equal to 0.51, p value of <0.0001). The work presented here supports these findings by fully characterizing the inhibitory properties and exploring CYP3cides mechanism of action. To aid the researcher, multiple commercially available sources of CYP3cide were established, and a protocol was developed to quantitatively determine CYP3A4 contribution to the metabolism of an investigational compound. Through the establishment of this protocol and the evidence provided here, we believe that CYP3cide is a very useful tool for understanding the relative roles of CYP3A4 versus CYP3A5 and the impact of CYP3A5 genetic polymorphism on a compounds pharmacokinetics.


Drug Metabolism and Disposition | 2014

Relative Contributions of Cytochrome CYP3A4 Versus CYP3A5 for CYP3A-Cleared Drugs Assessed In Vitro Using a CYP3A4-Selective Inactivator (CYP3cide)

Elaine Tseng; Robert L. Walsky; Luzietti Ra; Harris Jj; Rachel E. Kosa; Theunis C. Goosen; Michael Zientek; Obach Rs

Metabolism by cytochrome P4503A (CYP3A) is the most prevalent clearance pathway for drugs. Designation of metabolism by CYP3A commonly refers to the potential contribution by one or both of two enzymes, CYP3A4 and CYP3A5. The metabolic turnover of 32 drugs known to be largely metabolized by CYP3A was examined in human liver microsomes (HLMs) from CYP3A5 expressers (*1/*1 genotype) and nonexpressers (*3/*3 genotype) in the presence and absence of ketoconazole and CYP3cide (a selective CYP3A4 inactivator) to calculate the contribution of CYP3A5 to metabolism. Drugs with the highest contribution of CYP3A5 included atazanavir, vincristine, midazolam, vardenafil, otenabant, verapamil, and tacrolimus, whereas 17 of the 32 tested showed negligible CYP3A5 contribution. For specific reactions in HLMs from *1/*1 donors, CYP3A5 contributes 55% and 44% to midazolam 1′- and 4-hydroxylation, 16% to testosterone 6β-hydroxylation, 56% and 19% to alprazolam 1′- and 4-hydroxylation, 10% to tamoxifen N-demethylation, and 58% to atazanavir p-hydroxylation. Comparison of the in vitro observations to clinical pharmacokinetic data showed only a weak relationship between estimated contribution by CYP3A5 and impact of CYP3A5 genotype on oral clearance, in large part because of the scatter in clinical data and the low numbers of study subjects used in CYP3A5 pharmacogenetics studies. These data should be useful in guiding which drugs should be evaluated for differences in pharmacokinetics and metabolism between subjects expressing CYP3A5 and those who do not express this enzyme.


Drug Metabolism and Disposition | 2007

A Comparison of 2-Phenyl-2-(1-piperidinyl)propane (PPP), 1,1′,1″-Phosphinothioylidynetrisaziridine (ThioTEPA), Clopidogrel, and Ticlopidine as Selective Inactivators of Human Cytochrome P450 2B6

Robert L. Walsky; R. Scott Obach

The use of selective chemical inhibitors of human cytochrome P450 (P450) enzymes represents a powerful method by which the relative contributions of various human P450 enzymes to the metabolism of drugs can be determined. However, the identification of CYP2B6 in the metabolism of drugs has been more challenging because of the lack of a well established inhibitor of this enzyme. In this report, we describe the selectivity of 2-phenyl-2-(1-piperidinyl)propane (PPP) as an inactivator of CYP2B6 and compare this selectivity versus other CYP2B6 inactivators: 1,1′,1″-phosphinothioylidynetrisaziridine (thioTEPA), clopidogrel, and ticlopidine. Values of KI and kinact for PPP were 5.6 μM and 0.13/min for bupropion hydroxylase catalyzed by pooled human liver microsomes, and values for thioTEPA were similar (4.8 μM and 0.20/min, respectively). Intrinsic inactivation capability was considerably greater for clopidogrel because of a greater kinact value (1.9/min). Ticlopidine was potent with KI and kinact values of 0.32 μM and 0.43/min, respectively. The selectivity of these four agents for CYP2B6 was determined by testing their effects on other human P450 enzyme activities using conditions that yield ∼90% inactivation of CYP2B6 activity. The results showed that preincubation of human liver microsomes with PPP at 30 μM for 30 min provided more selective inhibition for CYP2B6 than thioTEPA, clopidogrel, and ticlopidine. Furthermore, the use of clopidogrel is complicated by the observation that this agent is not stable in the presence of human liver microsomes, even without addition of NADPH. Therefore, PPP can serve as a selective chemical inactivator of CYP2B6 and be used to define the role of CYP2B6 in the metabolism of drugs.


Drug Metabolism and Disposition | 2012

Differential Modulation of Cytochrome P450 Activity and the Effect of 1-Aminobenzotriazole on Hepatic Transport in Sandwich-Cultured Human Hepatocytes

Emi Kimoto; Robert L. Walsky; Yi-an Bi; Kevin M. Whalen; Young-Sun Yang; Collette D. Linder; Yongling Xiao; Ken Iseki; Katherine Fenner; Ayman El-Kattan; Yurong Lai

Sandwich-cultured human hepatocytes (SCHH) have been widely used for in vitro assessments of biliary clearance. However, the modulation of metabolism enzymes has not been fully evaluated in this system. The present study was therefore undertaken to determine the activity of cytochrome P450 (P450) 1A2, 2C8, 2C9, 2C19, 2D6, and 3A and to evaluate the impact of 1-aminobenzotriazole (ABT) on hepatic uptake and biliary excretion in SCHH. The SCHH maintained integrity and viability as determined by lactate dehydrogenase release and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium assays conducted over the culture period. Although all assessed P450 activity decreased in day 2 SCHH, the extent of the decrease and the subsequent rebound in activity varied across the different isoforms. Day 5 CYP1A2 activity was approximately 2.5-fold higher than day 1 activity, whereas the CYP3A and CYP2C9 activities were 90 and 60% of the day 1 levels, respectively. In contrast, the initial CYP2C8, CYP2C19, and CYP2D6 activity losses did not rebound over the 5-day culture period. Furthermore, ABT was not found to have an effect, whether directly or indirectly as a P450 inactivator, with respect to the hepatic transport of rosuvastatin, atrovastatin, and midazolam in SCHH. Taken together, these results suggest that the SCHH model is a reliable tool to characterize hepatic uptake and biliary excretion. Due to the differential modulation of P450 activity, SCHH may not be considered a suitable tool for metabolic stability assessments with compounds predominantly cleared by certain P450 enzymes.

Collaboration


Dive into the Robert L. Walsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conrad Fung

Vertex Pharmaceuticals

View shared research outputs
Top Co-Authors

Avatar

David B. Buckley

University of Kansas Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge