Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Theunis C. Goosen is active.

Publication


Featured researches published by Theunis C. Goosen.


Drug Metabolism and Disposition | 2004

DRUG-DRUG INTERACTIONS FOR UDP-GLUCURONOSYLTRANSFERASE SUBSTRATES: A PHARMACOKINETIC EXPLANATION FOR TYPICALLY OBSERVED LOW EXPOSURE (AUCI/AUC) RATIOS

J. Andrew Williams; Ruth Hyland; Barry C. Jones; Dennis A. Smith; Susan Hurst; Theunis C. Goosen; Vincent Peterkin; Jeffrey R. Koup; Simon E. Ball

Glucuronidation is a listed clearance mechanism for 1 in 10 of the top 200 prescribed drugs. The objective of this article is to encourage those studying ligand interactions with UDP-glucuronosyltransferases (UGTs) to adequately consider the potential consequences of in vitro UGT inhibition in humans. Spurred on by interest in developing potent and selective inhibitors for improved confidence around UGT reaction phenotyping, and the increased availability of recombinant forms of human UGTs, several recent studies have reported in vitro inhibition of UGT enzymes. In some cases, the observed potency of UGT inhibitors in vitro has been interpreted as having potential relevance in humans via pharmacokinetic drug-drug interactions. Although there are reported examples of clinically relevant drug-drug interactions for UGT substrates, exposure increases of the aglycone are rarely greater than 100% in the presence of an inhibitor relative to its absence (i.e., AUCi/AUC ≤2). This small magnitude in change is in contrast to drugs primarily cleared by cytochrome P450 enzymes, where exposures have been reported to increase as much as 35-fold on coadministration with an inhibitor (e.g., ketoconazole inhibition of CYP3A4-catalyzed terfenadine metabolism). In this article the evidence for purported clinical relevance of potent in vitro inhibition of UGT enzymes will be assessed, taking the following into account: in vitro data on the enzymology of glucuronide formation from aglycone, pharmacokinetic principles based on empirical data for inhibition of metabolism, and clinical data on the pharmacokinetic drug-drug interactions of drugs primarily cleared by glucuronidation.


Drug Metabolism and Disposition | 2010

In Vitro Assessment of Metabolic Drug-Drug Interaction Potential of Apixaban through Cytochrome P450 Phenotyping, Inhibition, and Induction Studies

Lifei Wang; Donglu Zhang; Nirmala Raghavan; Ming Yao; Li Ma; Charles A Frost; Brad D. Maxwell; Shiang-Yuan Chen; Kan He; Theunis C. Goosen; W. Griffith Humphreys; Scott J. Grossman

Apixaban is an oral, direct, and highly selective factor Xa inhibitor in late-stage clinical development for the prevention and treatment of thromboembolic diseases. The metabolic drug-drug interaction potential of apixaban was evaluated in vitro. The compound did not show cytochrome P450 inhibition (IC50 values >20 μM) in incubations of human liver microsomes with the probe substrates of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6, or 3A4/5. Apixaban did not show any effect at concentrations up to 20 μM on enzyme activities or mRNA levels of selected P450 enzymes (CYP1A2, 2B6, and 3A4/5) that are sensitive to induction in incubations with primary human hepatocytes. Apixaban showed a slow metabolic turnover in incubations of human liver microsomes with formation of O-demethylation (M2) and hydroxylation products (M4 and M7) as prominent in vitro metabolites. Experiments with human cDNA-expressed P450 enzymes and P450 chemical inhibitors and correlation with P450 activities in individual human liver microsomes demonstrated that the oxidative metabolism of apixaban for formation of all metabolites was predominantly catalyzed by CYP3A4/5 with a minor contribution of CYP1A2 and CYP2J2 for formation of M2. The contribution of CYP2C8, 2C9, and 2C19 to metabolism of apixaban was less significant. In addition, a human absorption, distribution, metabolism, and excretion study showed that more than half of the dose was excreted as unchanged parent (fm CYP <0.5), thus significantly reducing the overall metabolic drug-drug interaction potential of apixaban. Together with a low clinical efficacious concentration and multiple clearance pathways, these results demonstrate that the metabolic drug-drug interaction potential between apixaban and coadministered drugs is low.


Journal of Proteome Research | 2013

Targeted Quantitative Proteomics for the Analysis of 14 UGT1As and -2Bs in Human Liver Using NanoUPLC–MS/MS with Selected Reaction Monitoring

John K. Fallon; Hendrik Neubert; Ruth Hyland; Theunis C. Goosen; Philip C. Smith

Targeted quantitative proteomics using heavy isotope dilution techniques is increasingly being utilized to quantify proteins, including UGT enzymes, in biological matrices. Here we present a multiplexed method using nanoLC-MS/MS and multiple reaction monitoring (MRM) to quantify 14 UGT1As and UGT2Bs in liver matrices. Where feasible, we employ two or more proteotypic peptides per protein, with only four proteins quantified with only one proteotypic peptide. We apply the method to analysis of a library of 60 human liver microsome (HLM) and matching S9 samples. Ten of the UGT isoforms could be detected in liver, and the expression of each was consistent with mRNA expression reported in the literature. UGT2B17 was unusual in that ∼30% of liver microsomes had no or little (<0.5 pmol/mg protein) content, consistent with a known common polymorphism. Liver S9 UGT concentrations were approximately 10-15% those of microsomes. The method was robust, precise, and reproducible and provides novel UGT expression data in human liver that will benefit rational approaches to evaluate metabolism in drug development.


Pharmaceutical Research | 2013

Mechanistic Modeling to Predict the Transporter- and Enzyme-Mediated Drug-Drug Interactions of Repaglinide

Manthena V. Varma; Yurong Lai; Emi Kimoto; Theunis C. Goosen; Ayman El-Kattan; Vikas Kumar

ABSTRACTPurposeQuantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide.MethodsIn vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data.ResultsIn vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide.ConclusionsThis study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.


Drug Metabolism and Disposition | 2012

Optimized Assays for Human UDP-Glucuronosyltransferase (UGT) Activities: Altered Alamethicin Concentration and Utility to Screen for UGT Inhibitors

Robert L. Walsky; Jonathan N. Bauman; Bourcier K; Giddens G; Lapham K; Negahban A; Ryder Tf; Obach Rs; Ruth Hyland; Theunis C. Goosen

The measurement of the effect of new chemical entities on human UDP-glucuronosyltransferase (UGT) marker activities using in vitro experimentation represents an important experimental approach in drug development to guide clinical drug-interaction study designs or support claims that no in vivo interaction will occur. Selective high-performance liquid chromatography-tandem mass spectrometry functional assays of authentic glucuronides for five major hepatic UGT probe substrates were developed: β-estradiol-3-glucuronide (UGT1A1), trifluoperazine-N-glucuronide (UGT1A4), 5-hydroxytryptophol-O-glucuronide (UGT1A6), propofol-O-glucuronide (UGT1A9), and zidovudine-5′-glucuronide (UGT2B7). High analytical sensitivity permitted characterization of enzyme kinetic parameters at low human liver microsomal and recombinant UGT protein concentration (0.025 mg/ml), which led to a new recommended optimal universal alamethicin activation concentration of 10 μg/ml for microsomes. Alamethicin was not required for recombinant UGT incubations. Apparent enzyme kinetic parameters, particularly for UGT1A1 and UGT1A4, were affected by nonspecific binding. Unbound intrinsic clearance for UGT1A9 and UGT2B7 increased significantly after addition of 2% bovine serum albumin, with minimal changes for UGT1A1, UGT1A4, and UGT1A6. Eleven potential UGT and cytochrome P450 inhibitors were evaluated as UGT inhibitors, resulting in observation of nonselective UGT inhibition by chrysin, mefenamic acid, silibinin, tangeretin, ketoconazole, itraconazole, ritonavir, and verapamil. The pan-cytochrome P450 inhibitor, 1-aminobenzotriazole, minimally inhibited UGT activities and may be useful in reaction phenotyping of mixed UGT and cytochrome P450 substrates. These methods should prove useful in the routine assessments of the potential for new drug candidates to elicit pharmacokinetic drug interactions via inhibition of human UGT activities and the identification of UGT enzyme-selective chemical inhibitors.


Clinical Pharmacology & Therapeutics | 2004

Bergamottin contribution to the grapefruit juice–felodipine interaction and disposition in humans

Theunis C. Goosen; Doré Cillié; David G. Bailey; Chongwoo Yu; Kan He; Paul F. Hollenberg; Patrick M. Woster; Lucinda Cohen; J. Andrew Williams; Malie Rheeders; H. Paul Dijkstra

Our objectives were to evaluate the contribution of bergamottin to the grapefruit juice–felodipine interaction and to characterize bergamottin disposition.


Molecular Pharmaceutics | 2011

pH-Sensitive Interaction of HMG-CoA Reductase Inhibitors (Statins) with Organic Anion Transporting Polypeptide 2B1

Manthena V. Varma; Charles J. Rotter; Jonathan Chupka; Kevin M. Whalen; David B. Duignan; Bo Feng; John Litchfield; Theunis C. Goosen; Ayman El-Kattan

The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 μM, 0.53 ± 0.2 μM and 2.2 ± 0.4 μM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several statins due to their transporter affinity at acidic pH.


Drug Metabolism and Disposition | 2013

Targeted precise quantification of 12 human recombinant uridine-diphosphate glucuronosyl transferase 1A and 2B isoforms using nano-ultra-high-performance liquid chromatography/tandem mass spectrometry with selected reaction monitoring

John K. Fallon; Hendrik Neubert; Theunis C. Goosen; Philip C. Smith

Quantification methods employing stable isotope-labeled peptide standards and liquid chromatography–tandem mass spectrometry are increasingly being used to measure enzyme amounts in biologic samples. Isoform concentrations, combined with catalytic information, can be used in absorption, distribution, metabolism, and excretion studies to improve accuracy of in vitro/in vivo predictions. We quantified isoforms of uridine-diphosphate glucuronosyltransferase (UGT) 1A and 2B in 12 commercially available recombinant UGTs (recUGTs) (n = 49 samples) using nano-ultra-high-performance liquid chromatography–tandem mass spectrometry with selected reaction monitoring). Samples were trypsin-digested and analyzed using our previously published method. Two MRMs were collected per peptide and averaged. Where available, at least two peptides were measured per UGT isoform. The assay could detect UGTs in all recombinant preparations: recUGTs 1A1, 1A3, 1A4, 1A6, 1A7, 1A8, 1A9, 1A10, 2B4, 2B7, 2B15, and 2B17, with limit of detection below 1.0 pmol/mg protein for all isoforms. The assay had excellent linearity in the range observed (2–15.5 pmol/mg, after dilution). Examples of concentrations determined were 1465, 537, 538, 944, 865, 698, 604, 791, 382, 1149, 307, and 740 pmol/mg protein for the respective isoforms. There was a 6.9-fold difference between the maximum and minimum recUGT concentrations. The range of concentrations determined indicates that catalytic rates per mg total protein in vitro will not accurately reflect isoform inherent specific activity for a particular drug candidate. This is the first report of a targeted precise quantification of commercially available recUGTs. The assay has potential for use in comparing UGT amounts with catalytic activity determined using probe substrates, thus allowing representation of catalysis as per pmol of UGT isoform.


Drug Metabolism and Disposition | 2007

Atorvastatin Glucuronidation Is Minimally and Nonselectively Inhibited by the Fibrates Gemfibrozil, Fenofibrate, and Fenofibric Acid

Theunis C. Goosen; Bauman Jn; Davis Ja; Yu C; Susan Hurst; Williams Ja; Loi Cm

Gemfibrozil coadministration generally results in plasma statin area under the curve (AUC) increases, ranging from moderate (2- to 3-fold) with simvastatin, lovastatin, and pravastatin to most significant with cerivastatin (5.6-fold). Inhibition of statin glucuronidation has been postulated as a potential mechanism of interaction (Drug Metab Dispos 30:1280–1287, 2002). This study was conducted to determine the in vitro inhibitory potential of fibrates toward atorvastatin glucuronidation. [3H]Atorvastatin, atorvastatin, and atorvastatin lactone were incubated with human liver microsomes or human recombinant UDP-glucuronosyltransferases (UGTs) and characterized using liquid chromatography (LC)/tandem mass spectrometry and LC/UV/β-radioactivity monitor/mass spectrometry. [3H]Atorvastatin yields a minor ether glucuronide (G1) and a major acyl glucuronide (G2) with subsequent pH-dependent lactonization of G2 to yield atorvastatin lactone. Atorvastatin lactonization best fit substrate inhibition kinetics (Km = 12 μM, Vmax = 74 pmol/min/mg, Ki = 75 μM). Atorvastatin lactone yields a single ether glucuronide (G3). G3 formation best fit Michaelis-Menten kinetics (Km = 2.6 μM, Vmax = 10.6 pmol/min/mg). Six UGT enzymes contribute to atorvastatin glucuronidation with G2 and G3 formation catalyzed by UGTs 1A1, 1A3, 1A4, 1A8, and 2B7, whereas G1 formation was catalyzed by UGTs 1A3, 1A4, and 1A9. Gemfibrozil, fenofibrate, and fenofibric acid inhibited atorvastatin lactonization with IC50 values of 346, 320, and 291 μM, respectively. Based on unbound fibrate concentrations at the inlet to the liver, these data predict a small increase in atorvastatin AUC (∼1.2-fold) after gemfibrozil coadministration and no interaction with fenofibrate. This result is consistent with recent clinical reports indicating minimal atorvastatin AUC increases (∼1.2- to 1.4-fold) with gemfibrozil.


Expert Opinion on Drug Metabolism & Toxicology | 2013

Model-based approaches to predict drug–drug interactions associated with hepatic uptake transporters: preclinical, clinical and beyond

Hugh A. Barton; Yurong Lai; Theunis C. Goosen; Hannah M. Jones; Ayman El-Kattan; James R. Gosset; Jian Lin; Manthena V. Varma

Introduction: Membrane transporters have been recognized to play a key role in determining the absorption, distribution and elimination processes of drugs. The organic anion-transporting polypeptide (OATP)1B1 and OATP1B3 isoforms are selectively expressed in the human liver and are known to cause significant drug–drug interactions (DDIs), as observed with an increasing number of drugs. It is evident that DDIs involving hepatic transporters are capable of altering systemic, as well as tissue-specific, exposure of drug substrates resulting in marked differences in drug safety and/or efficacy. It is therefore essential to quantitatively predict such interactions early in the drug development to mitigate clinical risks. Areas covered: The role of hepatic uptake transporters in drug disposition and clinical DDIs has been reviewed with an emphasis on the current state of the models applicable for quantitative predictions. The readers will also gain insight into the in vitro experimental tools available to characterize transport kinetics, while appreciating the knowledge gaps in the in vitro–in vivo extrapolation (IVIVE), which warrant further investigation. Expert opinion: Static and dynamic models can be convincingly applied to quantitatively predict drug interactions, early in drug discovery, to mitigate clinical risks as well as to avoid unnecessary clinical studies. Compared to basic models, which focus on individual processes, mechanistic models provide the ability to assess DDI potential for compounds with systemic disposition determined by both transporters and metabolic enzymes. However, complexities in the experimental tools and an apparent disconnect in the IVIVE of transport kinetics have limited the physiologically based pharmacokinetic modeling strategies. Emerging data on the expression of transporter proteins and tissue drug concentrations are expected to help bridge these gaps. In addition, detailed characterization of substrate kinetics can facilitate building comprehensive mechanistic models.

Collaboration


Dive into the Theunis C. Goosen's collaboration.

Researchain Logo
Decentralizing Knowledge