Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Brucker is active.

Publication


Featured researches published by Robert M. Brucker.


Science | 2013

The hologenomic basis of speciation: gut bacteria cause hybrid lethality in the genus Nasonia.

Robert M. Brucker; Seth R. Bordenstein

Microbes → Host Speciation? No living organism is an individual—an individuals microbiota can outnumber the hosts somatic cells. Working in parasitoid wasps, Brucker and Bordenstein (p. 667, published online 18 July) now suggest that the gut microbiota can play a crucial role in speciation and hybrid lethality. In a clade of parasitoid wasps, interspecies hybrids survived when reared on antibiotic-treated sterile food (thus eliminating gut microbiota), but experienced high mortality when reared on conventional diet or host material. Speciation may be a collective property of an organism and its microbiota. Although the gut microbiome influences numerous aspects of organismal fitness, its role in animal evolution and the origin of new species is largely unknown. Here we present evidence that beneficial bacterial communities in the guts of closely related species of the genus Nasonia form species-specific phylosymbiotic assemblages that cause lethality in interspecific hybrids. Bacterial constituents and abundance are irregular in hybrids relative to parental controls, and antibiotic curing of the gut bacteria significantly rescues hybrid survival. Moreover, feeding bacteria to germ-free hybrids reinstates lethality and recapitulates the expression of innate immune genes observed in conventionally reared hybrids. We conclude that in this animal complex, the gut microbiome and host genome represent a coadapted “hologenome” that breaks down during hybridization, promoting hybrid lethality and assisting speciation.


Trends in Ecology and Evolution | 2012

Speciation by symbiosis

Robert M. Brucker; Seth R. Bordenstein

In the Origin of Species, Darwin struggled with how continuous changes within a species lead to the emergence of discrete species. Molecular analyses have since identified nuclear genes and organelles that underpin speciation. In this review, we explore the microbiota as a third genetic component that spurs species formation. We first recall Ivan Wallins original conception from the early 20th century on the role that bacteria play in speciation. We then describe three fundamental observations that justify a prominent role for microbes in eukaryotic speciation, consolidate exemplar studies of microbe-assisted speciation and incorporate the microbiota into classic models of speciation.


Applied and Environmental Microbiology | 2009

The Bacterially Produced Metabolite Violacein Is Associated with Survival of Amphibians Infected with a Lethal Fungus

Matthew H. Becker; Robert M. Brucker; Christian R. Schwantes; Reid N. Harris; Kevin P. C. Minbiole

ABSTRACT The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 μM on a salamanders skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria.


bioRxiv | 2016

Getting the Hologenome Concept Right: an Eco-Evolutionary Framework for Hosts and Their Microbiomes

Kevin R. Theis; Nolwenn M. Dheilly; Jonathan L. Klassen; Robert M. Brucker; John F. Baines; Thomas C. G. Bosch; John F. Cryan; Scott F. Gilbert; Charles J. Goodnight; Elisabeth A. Lloyd; Jan Sapp; Philippe Vandenkoornhuyse; Ilana Zilber-Rosenberg; Eugene Rosenberg; Seth R. Bordenstein

Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization—what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as host-microbial coevolution? Critical discourse is necessary in this nascent area, but productive discourse requires that skeptics and proponents use the same lexicon. ABSTRACT Given the complexity of host-microbiota symbioses, scientists and philosophers are asking questions at new biological levels of hierarchical organization—what is a holobiont and hologenome? When should this vocabulary be applied? Are these concepts a null hypothesis for host-microbe systems or limited to a certain spectrum of symbiotic interactions such as host-microbial coevolution? Critical discourse is necessary in this nascent area, but productive discourse requires that skeptics and proponents use the same lexicon. For instance, critiquing the hologenome concept is not synonymous with critiquing coevolution, and arguing that an entity is not a primary unit of selection dismisses the fact that the hologenome concept has always embraced multilevel selection. Holobionts and hologenomes are incontrovertible, multipartite entities that result from ecological, evolutionary, and genetic processes at various levels. They are not restricted to one special process but constitute a wider vocabulary and framework for host biology in light of the microbiome.


Nature Communications | 2015

Bile diversion to the distal small intestine has comparable metabolic benefits to bariatric surgery

Charles R. Flynn; Vance L. Albaugh; Steven Cai; Joyce Cheung-Flynn; Phillip E. Williams; Robert M. Brucker; Seth R. Bordenstein; Yan Guo; David H. Wasserman; Naji N. Abumrad

Roux-en-Y gastric bypass (RYGB) is highly effective in reversing obesity and associated diabetes. Recent observations in humans suggest a contributing role of increased circulating bile acids in mediating such effects. Here we use a diet-induced obesity (DIO) mouse model and compare metabolic remission when bile flow is diverted through a gallbladder anastomosis to jejunum, ileum or duodenum (sham control). We find that only bile diversion to the ileum results in physiologic changes similar to RYGB, including sustained improvements in weight, glucose tolerance and hepatic steatosis despite differential effects on hepatic gene expression. Circulating free fatty acids and triglycerides decrease while bile acids increase, particularly conjugated tauro-β-muricholic acid, an FXR antagonist. Activity of the hepatic FXR/FGF15 signalling axis is reduced and associated with altered gut microbiota. Thus bile diversion, independent of surgical rearrangement of the gastrointestinal tract, imparts significant weight loss accompanied by improved glucose and lipid homeostasis that are hallmarks of RYGB.


PLOS Biology | 2016

Phylosymbiosis: Relationships and Functional Effects of Microbial Communities across Host Evolutionary History

Andrew W. Brooks; Kevin D. Kohl; Robert M. Brucker; Edward J. van Opstal; Seth R. Bordenstein

Phylosymbiosis was recently proposed to describe the eco-evolutionary pattern, whereby the ecological relatedness of host-associated microbial communities parallels the phylogeny of related host species. Here, we test the prevalence of phylosymbiosis and its functional significance under highly controlled conditions by characterizing the microbiota of 24 animal species from four different groups (Peromyscus deer mice, Drosophila flies, mosquitoes, and Nasonia wasps), and we reevaluate the phylosymbiotic relationships of seven species of wild hominids. We demonstrate three key findings. First, intraspecific microbiota variation is consistently less than interspecific microbiota variation, and microbiota-based models predict host species origin with high accuracy across the dataset. Interestingly, the age of host clade divergence positively associates with the degree of microbial community distinguishability between species within the host clades, spanning recent host speciation events (~1 million y ago) to more distantly related host genera (~108 million y ago). Second, topological congruence analyses of each groups complete phylogeny and microbiota dendrogram reveal significant degrees of phylosymbiosis, irrespective of host clade age or taxonomy. Third, consistent with selection on host–microbiota interactions driving phylosymbiosis, there are survival and performance reductions when interspecific microbiota transplants are conducted between closely related and divergent host species pairs. Overall, these findings indicate that the composition and functional effects of an animals microbial community can be closely allied with host evolution, even across wide-ranging timescales and diverse animal systems reared under controlled conditions.


Evolution | 2012

The roles of host evolutionary relationships (genus: Nasonia) and development in structuring microbial communities.

Robert M. Brucker; Seth R. Bordenstein

The comparative structure of bacterial communities among closely related host species remains relatively unexplored. For instance, as speciation events progress from incipient to complete stages, does divergence in the composition of the species’ microbial communities parallel the divergence of host nuclear genes? To address this question, we used the recently diverged species of the parasitoid wasp genus Nasonia to test whether the evolutionary relationships of their bacterial microbiotas recapitulate the Nasonia phylogenetic history. We also assessed microbial diversity in Nasonia at different stages of development to determine the role that host age plays in microbiota structure. The results indicate that all three species of Nasonia share simple larval microbiotas dominated by the γ‐proteobacteria class; however, bacterial species diversity increases as Nasonia develop into pupae and adults. Finally, under identical environmental conditions, the relationships of the microbial communities reflect the phylogeny of the Nasonia host species at multiple developmental stages, which suggests that the structure of an animals microbial community is closely allied with divergence of host genes. These findings highlight the importance of host evolutionary relationships on microbiota composition and have broad implications for future studies of microbial symbiosis and animal speciation.


Applied and Environmental Microbiology | 2011

Disruption of the Termite Gut Microbiota and Its Prolonged Consequences for Fitness

Rebeca B. Rosengaus; Courtney N. Zecher; Kelley F. Schultheis; Robert M. Brucker; Seth R. Bordenstein

ABSTRACT The disruption of host-symbiont interactions through the use of antibiotics can help elucidate microbial functions that go beyond short-term nutritional value. Termite gut symbionts have been studied extensively, but little is known about their impact on the termites reproductive output. Here we describe the effect that the antibiotic rifampin has not only on the gut microbial diversity but also on the longevity, fecundity, and weight of two termite species, Zootermopsis angusticollis and Reticulitermes flavipes. We report three key findings: (i) the antibiotic rifampin, when fed to primary reproductives during the incipient stages of colony foundation, causes a permanent reduction in the diversity of gut bacteria and a transitory effect on the density of the protozoan community; (ii) rifampin treatment reduces oviposition rates of queens, translating into delayed colony growth and ultimately reduced colony fitness; and (iii) the initial dosages of rifampin had severe long-term fitness effects on Z. angusticollis. Taken together, our findings demonstrate that the antibiotic-induced perturbation of the microbial community is associated with prolonged reductions in longevity and fecundity. A causal relationship between these changes in the gut microbial population structures and fitness is suggested by the acquisition of opportunistic pathogens and incompetence of the termites to restore a pretreatment, native microbiota. Our results indicate that antibiotic treatment significantly alters the termites microbiota, reproduction, colony establishment, and ultimately colony growth and development. We discuss the implications for antimicrobials as a new application to the control of termite pest species.


Frontiers in Microbiology | 2016

Using "Omics" and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases

Eria A. Rebollar; Rachael E. Antwis; Matthew H. Becker; Lisa K. Belden; Molly C. Bletz; Robert M. Brucker; Xavier A. Harrison; Myra C. Hughey; Jordan G. Kueneman; Andrew H. Loudon; Valerie J. McKenzie; Daniel Medina; Kevin P. C. Minbiole; Louise A. Rollins-Smith; Jenifer B. Walke; Sophie Weiss; Douglas C. Woodhams; Reid N. Harris

Emerging infectious diseases in wildlife are responsible for massive population declines. In amphibians, chytridiomycosis caused by Batrachochytrium dendrobatidis, Bd, has severely affected many amphibian populations and species around the world. One promising management strategy is probiotic bioaugmentation of antifungal bacteria on amphibian skin. In vivo experimental trials using bioaugmentation strategies have had mixed results, and therefore a more informed strategy is needed to select successful probiotic candidates. Metagenomic, transcriptomic, and metabolomic methods, colloquially called “omics,” are approaches that can better inform probiotic selection and optimize selection protocols. The integration of multiple omic data using bioinformatic and statistical tools and in silico models that link bacterial community structure with bacterial defensive function can allow the identification of species involved in pathogen inhibition. We recommend using 16S rRNA gene amplicon sequencing and methods such as indicator species analysis, the Kolmogorov–Smirnov Measure, and co-occurrence networks to identify bacteria that are associated with pathogen resistance in field surveys and experimental trials. In addition to 16S amplicon sequencing, we recommend approaches that give insight into symbiont function such as shotgun metagenomics, metatranscriptomics, or metabolomics to maximize the probability of finding effective probiotic candidates, which can then be isolated in culture and tested in persistence and clinical trials. An effective mitigation strategy to ameliorate chytridiomycosis and other emerging infectious diseases is necessary; the advancement of omic methods and the integration of multiple omic data provide a promising avenue toward conservation of imperiled species.


Zoology | 2013

The capacious hologenome

Robert M. Brucker; Seth R. Bordenstein

Blending disciplines can be transformative in science, yet interdisciplinary mergers should not escape healthy skepticism. Indeed, the history of biology shows us that debates about the relative importance of nuclear genetics vs. microbial symbiosis in eukaryotic biology are among the most engaging. Todays technology may help resolve this century old debate as it illuminates the interwoven genomics and functions of symbionts with their host genome. Thus, we can now assert that all subdisciplines of zoology require microbiology. Although controversial to some, the evidence from studies of host-associated microbial communities indicates that metazoans are hologenomes - interconnected compositions of animal and microbes.

Collaboration


Dive into the Robert M. Brucker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas C. Woodhams

University of Massachusetts Boston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reid N. Harris

James Madison University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge