Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Freeman is active.

Publication


Featured researches published by Robert M. Freeman.


Nature | 2006

Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida.

Sarah J. Bourlat; Thorhildur Juliusdottir; Christopher J. Lowe; Robert M. Freeman; Jochanan Aronowicz; Mark Kirschner; Eric S. Lander; Michael C. Thorndyke; Hiroaki Nakano; Andrea B. Kohn; Andreas Heyland; Leonid L. Moroz; Richard R. Copley; Maximilian J. Telford

Deuterostomes comprise vertebrates, the related invertebrate chordates (tunicates and cephalochordates) and three other invertebrate taxa: hemichordates, echinoderms and Xenoturbella. The relationships between invertebrate and vertebrate deuterostomes are clearly important for understanding our own distant origins. Recent phylogenetic studies of chordate classes and a sea urchin have indicated that urochordates might be the closest invertebrate sister group of vertebrates, rather than cephalochordates, as traditionally believed. More remarkable is the suggestion that cephalochordates are closer to echinoderms than to vertebrates and urochordates, meaning that chordates are paraphyletic. To study the relationships among all deuterostome groups, we have assembled an alignment of more than 35,000 homologous amino acids, including new data from a hemichordate, starfish and Xenoturbella. We have also sequenced the mitochondrial genome of Xenoturbella. We support the clades Olfactores (urochordates and vertebrates) and Ambulacraria (hemichordates and echinoderms). Analyses using our new data, however, do not support a cephalochordate and echinoderm grouping and we conclude that chordates are monophyletic. Finally, nuclear and mitochondrial data place Xenoturbella as the sister group of the two ambulacrarian phyla. As such, Xenoturbella is shown to be an independent phylum, Xenoturbellida, bringing the number of living deuterostome phyla to four.


Cell | 1995

The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early xenopus development

Terry L. Tang; Robert M. Freeman; Alana M. O'Reilly; Benjamin G. Neel; Sergei Y. Sokol

SH-PTP2, the vertebrate homolog of Drosophila corkscrew, associates with several activated growth factor receptors, but its biological function is unknown. We assayed the effects of injection of wild-type and mutant SH-PTP2 RNAs on Xenopus embryogenesis. An internal phosphatase domain deletion (delta P) acts as a dominant negative mutant, causing severe posterior truncations. This phenotype is rescued by SH-PTP2, but not by the closely related SH-PTP1. In ectodermal explants, delta P blocks fibroblast growth factor (FGF)- and activin-mediated induction of mesoderm and FGF-induced mitogen-activated protein (MAP) kinase activation. Our results indicate that SH-PTP2 is required for early vertebrate development, acting as a positive component in FGF signaling downstream of the FGF receptor and upstream of MAP kinase.


PLOS Biology | 2006

Dorsoventral Patterning in Hemichordates: Insights into Early Chordate Evolution

Christopher J. Lowe; Mark Terasaki; Michael M. A. Wu; Robert M. Freeman; Linda L. Runft; Kristen M. Kwan; Saori Haigo; Jochanan Aronowicz; Eric S. Lander; Chris Gruber; Smith M; Marc W. Kirschner; John C. Gerhart

We have compared the dorsoventral development of hemichordates and chordates to deduce the organization of their common ancestor, and hence to identify the evolutionary modifications of the chordate body axis after the lineages split. In the hemichordate embryo, genes encoding bone morphogenetic proteins (Bmp) 2/4 and 5/8, as well as several genes for modulators of Bmp activity, are expressed in a thin stripe of ectoderm on one midline, historically called “dorsal.” On the opposite midline, the genes encoding Chordin and Anti-dorsalizing morphogenetic protein (Admp) are expressed. Thus, we find a Bmp-Chordin developmental axis preceding and underlying the anatomical dorsoventral axis of hemichordates, adding to the evidence from Drosophila and chordates that this axis may be at least as ancient as the first bilateral animals. Numerous genes encoding transcription factors and signaling ligands are expressed in the three germ layers of hemichordate embryos in distinct dorsoventral domains, such as pox neuro, pituitary homeobox, distalless, and tbx2/3 on the Bmp side and netrin, mnx, mox, and single-minded on the Chordin-Admp side. When we expose the embryo to excess Bmp protein, or when we deplete endogenous Bmp by small interfering RNA injections, these expression domains expand or contract, reflecting their activation or repression by Bmp, and the embryos develop as dorsalized or ventralized limit forms. Dorsoventral patterning is independent of anterior/posterior patterning, as in Drosophila but not chordates. Unlike both chordates and Drosophila, neural gene expression in hemichordates is not repressed by high Bmp levels, consistent with their development of a diffuse rather than centralized nervous system. We suggest that the common ancestor of hemichordates and chordates did not use its Bmp-Chordin axis to segregate epidermal and neural ectoderm but to pattern many other dorsoventral aspects of the germ layers, including neural cell fates within a diffuse nervous system. Accordingly, centralization was added in the chordate line by neural-epidermal segregation, mediated by the pre-existing Bmp-Chordin axis. Finally, since hemichordates develop the mouth on the non-Bmp side, like arthropods but opposite to chordates, the mouth and Bmp-Chordin axis may have rearranged in the chordate line, one relative to the other.


Developmental Cell | 2015

On the Relationship of Protein and mRNA Dynamics in Vertebrate Embryonic Development

Leonid Peshkin; Martin Wühr; Esther J. Pearl; Wilhelm Haas; Robert M. Freeman; John C. Gerhart; Allon M. Klein; Marko E. Horb; Steven P. Gygi; Marc W. Kirschner

A biochemical explanation of development from the fertilized egg to the adult requires an understanding of the proteins and RNAs expressed over time during embryogenesis. We present a comprehensive characterization of protein and mRNA dynamics across early development in Xenopus. Surprisingly, we find that most protein levels change little and duplicated genes are expressed similarly. While the correlation between protein and mRNA levels is poor, a mass action kinetics model parameterized using protein synthesis and degradation rates regresses protein dynamics to RNA dynamics, corrected for initial protein concentration. This study provides detailed data for absolute levels of ∼10,000 proteins and ∼28,000 transcripts via a convenient web portal, a rich resource for developmental biologists. It underscores the lasting impact of maternal dowry, finds surprisingly few cases where degradation alone drives a change in protein level, and highlights the importance of transcription in shaping the dynamics of the embryonic proteome.


Nature | 2015

Hemichordate genomes and deuterostome origins

Oleg Simakov; Takeshi Kawashima; Ferdinand Marlétaz; Jerry Jenkins; Ryo Koyanagi; Therese Mitros; Kanako Hisata; Jessen Bredeson; Eiichi Shoguchi; Fuki Gyoja; Jia-Xing Yue; Yi-Chih Chen; Robert M. Freeman; Akane Sasaki; Tomoe Hikosaka-Katayama; Atsuko Sato; Manabu Fujie; Kenneth W. Baughman; Judith Levine; Paul Gonzalez; Christopher B. Cameron; Jens H. Fritzenwanker; Ariel M. Pani; Hiroki Goto; Miyuki Kanda; Nana Arakaki; Shinichi Yamasaki; Jiaxin Qu; Andrew Cree; Yan Ding

Acorn worms, also known as enteropneust (literally, ‘gut-breathing’) hemichordates, are marine invertebrates that share features with echinoderms and chordates. Together, these three phyla comprise the deuterostomes. Here we report the draft genome sequences of two acorn worms, Saccoglossus kowalevskii and Ptychodera flava. By comparing them with diverse bilaterian genomes, we identify shared traits that were probably inherited from the last common deuterostome ancestor, and then explore evolutionary trajectories leading from this ancestor to hemichordates, echinoderms and chordates. The hemichordate genomes exhibit extensive conserved synteny with amphioxus and other bilaterians, and deeply conserved non-coding sequences that are candidates for conserved gene-regulatory elements. Notably, hemichordates possess a deuterostome-specific genomic cluster of four ordered transcription factor genes, the expression of which is associated with the development of pharyngeal ‘gill’ slits, the foremost morphological innovation of early deuterostomes, and is probably central to their filter-feeding lifestyle. Comparative analysis reveals numerous deuterostome-specific gene novelties, including genes found in deuterostomes and marine microbes, but not other animals. The putative functions of these genes can be linked to physiological, metabolic and developmental specializations of the filter-feeding ancestor.


The Biological Bulletin | 2008

cDNA sequences for transcription factors and signaling proteins of the hemichordate Saccoglossus kowalevskii: efficacy of the expressed sequence tag (EST) approach for evolutionary and developmental studies of a new organism.

Robert M. Freeman; Michael Wu; Cordonnier-Pratt Mm; Pratt Lh; Chris Gruber; Smith M; Eric S. Lander; Nicole Stange-Thomann; Christopher J. Lowe; John C. Gerhart; Marc W. Kirschner

We describe a collection of expressed sequence tags (ESTs) for Saccoglossus kowalevskii, a direct-developing hemichordate valuable for evolutionary comparisons with chordates. The 202,175 ESTs represent 163,633 arrayed clones carrying cDNAs prepared from embryonic libraries, and they assemble into 13,677 continuous sequences (contigs), leaving 10,896 singletons (excluding mitochondrial sequences). Of the contigs, 53% had significant matches when BLAST was used to query the NCBI databases (≤10−10), as did 51% of the singletons. Contigs most frequently matched sequences from amphioxus (29%), chordates (67%), and deuterostomes (87%). From the clone array, we isolated 400 full-length sequences for transcription factors and signaling proteins of use for evolutionary and developmental studies. The set includes sequences for fox, pax, tbx, hox, and other homeobox-containing factors, and for ligands and receptors of the TGFβ, Wnt, Hh, Delta/Notch, and RTK pathways. At least 80% of key sequences have been obtained, when judged against gene lists of model organisms. The median length of these cDNAs is 2.3 kb, including 1.05 kb of 3′ untranslated region (UTR). Only 30% are entirely matched by single contigs assembled from ESTs. We conclude that an EST collection based on 150,000 clones is a rich source of sequences for molecular developmental work, and that the EST approach is an efficient way to initiate comparative studies of a new organism.


Standards in Genomic Sciences | 2012

Cephalopod Genomics: A Plan of Strategies and Organization

Caroline B. Albertin; Laure Bonnaud; C. Titus Brown; Wendy J. Crookes-Goodson; Rute R. da Fonseca; Carlo Di Cristo; Brian P. Dilkes; Eric Edsinger-Gonzales; Robert M. Freeman; Roger T. Hanlon; Kristen M. Koenig; Annie R. Lindgren; Mark Q. Martindale; Patrick Minx; Leonid L. Moroz; Marie-Therese Nödl; Spencer V. Nyholm; Atsushi Ogura; Judit R. Pungor; Joshua J. C. Rosenthal; Erich M. Schwarz; Shuichi Shigeno; Jan M. Strugnell; Tim Wollesen; Guojie Zhang; Clifton W. Ragsdale

The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, “Paths to Cephalopod Genomics-Strategies, Choices, Organization,” held in Durham, North Carolina, USA on May 24–27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper.


Evodevo | 2014

The Fox/Forkhead transcription factor family of the hemichordate Saccoglossus kowalevskii

Jens H. Fritzenwanker; John C. Gerhart; Robert M. Freeman; Christopher J. Lowe

BackgroundThe Fox gene family is a large family of transcription factors that arose early in organismal evolution dating back to at least the common ancestor of metazoans and fungi. They are key components of many gene regulatory networks essential for embryonic development. Although much is known about the role of Fox genes during vertebrate development, comprehensive comparative studies outside vertebrates are sparse. We have characterized the Fox transcription factor gene family from the genome of the enteropneust hemichordate Saccoglossus kowalevskii, including phylogenetic analysis, genomic organization, and expression analysis during early development. Hemichordates are a sister group to echinoderms, closely related to chordates and are a key group for tracing the evolution of gene regulatory mechanisms likely to have been important in the diversification of the deuterostome phyla.ResultsOf the 22 Fox gene families that were likely present in the last common ancestor of all deuterostomes, S. kowalevskii has a single ortholog of each group except FoxH, which we were unable to detect, and FoxQ2, which has three paralogs. A phylogenetic analysis of the FoxQ2 family identified an ancestral duplication in the FoxQ2 lineage at the base of the bilaterians. The expression analyses of all 23 Fox genes of S. kowalevskii provide insights into the evolution of components of the regulatory networks for the development of pharyngeal gill slits (foxC, foxL1, and foxI), mesoderm patterning (foxD, foxF, foxG), hindgut development (foxD, foxI), cilia formation (foxJ1), and patterning of the embryonic apical territory (foxQ2).ConclusionsComparisons of our results with data from echinoderms, chordates, and other bilaterians help to develop hypotheses about the developmental roles of Fox genes that likely characterized ancestral deuterostomes and bilaterians, and more recent clade-specific innovations.


Journal of Biological Chemistry | 2014

Thymine DNA glycosylase is a CRL4Cdt2 substrate

Tamara J. Slenn; Benjamin Morris; Courtney G. Havens; Robert M. Freeman; Tatsuro Takahashi; Johannes C. Walter

Background: E3 ubiquitin ligases facilitate destruction of other proteins. Results: In frog egg extract, the DNA repair factor thymine DNA glycosylase (TDG) was destroyed during DNA replication and repair, dependent on the E3 ubiquitin ligase CRL4Cdt2. Conclusion: TDG is a novel target of CRL4Cdt2. Significance: We identified a novel form of TDG regulation that informs how cells regulate S phase and epigenetic inheritance. The E3 ubiquitin ligase CRL4Cdt2 targets proteins for destruction in S phase and after DNA damage by coupling ubiquitylation to DNA-bound proliferating cell nuclear antigen (PCNA). Coupling to PCNA involves a PCNA-interacting peptide (PIP) degron motif in the substrate that recruits CRL4Cdt2 while binding to PCNA. In vertebrates, CRL4Cdt2 promotes degradation of proteins whose presence in S phase is deleterious, including Cdt1, Set8, and p21. Here, we show that CRL4Cdt2 targets thymine DNA glycosylase (TDG), a base excision repair enzyme that is involved in DNA demethylation. TDG contains a conserved and nearly perfect match to the PIP degron consensus. TDG is ubiquitylated and destroyed in a PCNA-, Cdt2-, and PIP degron-dependent manner during DNA repair in Xenopus egg extract. The protein can also be destroyed during DNA replication in this system. During Xenopus development, TDG first accumulates during gastrulation, and its expression is down-regulated by CRL4Cdt2. Our results expand the group of vertebrate CRL4Cdt2 substrates to include a bona fide DNA repair enzyme.


BMC Bioinformatics | 2006

MAGIC-SPP: a database-driven DNA sequence processing package with associated management tools

Chun Liang; Feng Sun; Haiming Wang; Junfeng Qu; Robert M. Freeman; Lee H. Pratt; Marie-Michèle Cordonnier-Pratt

BackgroundProcessing raw DNA sequence data is an especially challenging task for relatively small laboratories and core facilities that produce as many as 5000 or more DNA sequences per week from multiple projects in widely differing species. To meet this challenge, we have developed the flexible, scalable, and automated sequence processing package described here.ResultsMAGIC-SPP is a DNA sequence processing package consisting of an Oracle 9i relational database, a Perl pipeline, and user interfaces implemented either as JavaServer Pages (JSP) or as a Java graphical user interface (GUI). The database not only serves as a data repository, but also controls processing of trace files. MAGIC-SPP includes an administrative interface, a laboratory information management system, and interfaces for exploring sequences, monitoring quality control, and troubleshooting problems related to sequencing activities. In the sequence trimming algorithm it employs new features designed to improve performance with respect to concerns such as concatenated linkers, identification of the expected start position of a vector insert, and extending the useful length of trimmed sequences by bridging short regions of low quality when the following high quality segment is sufficiently long to justify doing so.ConclusionMAGIC-SPP has been designed to minimize human error, while simultaneously being robust, versatile, flexible and automated. It offers a unique combination of features that permit administration by a biologist with little or no informatics background. It is well suited to both individual research programs and core facilities.

Collaboration


Dive into the Robert M. Freeman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Sun

University of Georgia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge