Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Parinussa is active.

Publication


Featured researches published by Robert M. Parinussa.


IEEE Transactions on Geoscience and Remote Sensing | 2012

Soil Moisture Retrievals From the WindSat Spaceborne Polarimetric Microwave Radiometer

Robert M. Parinussa; Thomas R. H. Holmes; R.A.M. de Jeu

An existing methodology to derive surface soil moisture from passive microwave satellite observations is applied to the WindSat multifrequency polarimetric microwave radiometer. The methodology is a radiative-transfer-based model that has successfully been applied to a series of (historical) satellite sensors, including the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Brightness temperature observations from the WindSat and AMSR-E radiometers were compared, and the WindSat observations were adjusted to overcome small sensor differences (e.g., frequency, bandwidth, incidence angle, and original sensor calibration procedure). The method to relate Ka-band brightness temperature observations to land surface temperature was adapted to the overpass times of WindSat. Statistical analysis with both satellite-observed and in situ soil moistures indicates that the quality of the newly derived WindSat soil moisture product is similar to that obtained with AMSR-E after the adjustment of the WindSat brightness temperature observations. The average correlation coefficients (R) between satellite soil moisture and in situ observations are similar for the two satellites with average values of R = 0.60 for WindSat and R = 0.62 for AMSR-E as calculated from 33 sites. On a global scale, the average correlation coefficient between the two satellite soil moisture products is high with a value of R = 0.83. The results of this study demonstrate that soil moisture from WindSat is consistent with existing soil moisture products derived from AMSR-E using the land parameter retrieval model. Therefore, the soil moisture retrievals from these two satellites could easily be combined to increase the temporal resolution of satellite-derived soil moisture observations.


Journal of Hydrometeorology | 2015

A Preliminary Study toward Consistent Soil Moisture from AMSR2

Robert M. Parinussa; T. R. H. Holmes; Niko Wanders; Wouter Dorigo; R.A.M. de Jeu

AbstractA preliminary study toward consistent soil moisture products from the Advanced Microwave Scanning Radiometer 2 (AMSR2) is presented. Its predecessor, the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), has provided Earth scientists with a consistent and continuous global soil moisture dataset. A major challenge remains to achieve synergy between these soil moisture datasets, which is hampered by the lack of an overlapping observation period of the sensors. Here, observations of the multifrequency microwave radiometer on board the Tropical Rainfall Measuring Mission (TRMM) satellite were used to improve consistency between AMSR-E and AMSR2. Several scenarios to achieve synergy between the AMSR-E and AMSR2 soil moisture products were evaluated. The novel soil moisture retrievals from C-band observations, a frequency band that is lacking on board the TRMM satellite, are also presented. A global comparison of soil moisture retrievals against ERA-Interim soil moisture demons...


Remote Sensing | 2015

The Impact of Local Acquisition Time on the Accuracy of Microwave Surface Soil Moisture Retrievals over the Contiguous United States

Fangni Lei; Wade T. Crow; Huanfeng Shen; Robert M. Parinussa; Thomas R. H. Holmes

Satellite-derived soil moisture products have become an important data source for the study of land surface processes and related applications. For satellites with sun-synchronous orbits, these products are typically derived separately for ascending and descending overpasses with different local acquisition times. Moreover, diurnal variations in land surface conditions, and the extent to which they are accurately characterized in retrieval algorithms, lead to distinct systematic and random error characteristics in ascending versus descending soil moisture products. Here, we apply two independent evaluation techniques (triple collocation and direct comparison against sparse ground-based observations) to quantify (correlation-based) accuracy differences in satellite-derived surface soil moisture acquired at different local acquisition times. The orbits from different satellites are separated into two overpass categories: AM (12:00 a.m. to 11:59 a.m. Local Solar Time) and PM (12:00 p.m. to 11:59 p.m. Local Solar Time). Results demonstrate how patterns in the accuracy of AM versus PM retrieval products obtained from a variety of active and passive microwave satellite sensors vary according to land cover and across satellite products with different local acquisition times.


Journal of remote sensing | 2014

Global surface soil moisture from the Microwave Radiation Imager onboard the Fengyun-3B satellite

Robert M. Parinussa; Guojie Wang; T.R.H. Holmes; Yi Y. Liu; A. J. Dolman; R.A.M. de Jeu; T. Jiang; P. Zhang; J. Shi

Soil moisture retrievals from China’s recently launched meteorological Fengyun-3B satellite are presented. An established retrieval algorithm – the Land Parameter Retrieval Model (LPRM) – was applied to observations of the Microwave Radiation Imager (MWRI) onboard this satellite. The newly developed soil moisture retrievals from this satellite mission may be incorporated in an existing global microwave-based soil moisture database. To reach consistency with an existing data set of multi-satellite soil moisture retrievals, an intercalibration step was applied to correct brightness temperatures for sensor differences between MWRI and the radiometer of the Tropical Rainfall Measuring Mission’s (TRMM’s) Microwave Imager (TMI), resulting from their individual calibration procedures. The newly derived soil moisture and vegetation optical depth product showed a high degree of consistency with parallel retrievals from both TMI and WindSat, the two satellites that are observing during the same time period and are already part of the LPRM database. High correlation (R > 0.60 at night-time) between the LPRM and official MWRI soil moisture products was shown over the validation networks experiencing semiarid climate conditions. The skills drop below 0.50 over forested regions, with the performance of the LPRM product slightly better than the official MWRI product. To demonstrate the promising use of the MWRI soil moisture in drought monitoring, a case study for a recent and unusually dry East Asian summer Monsoon was conducted. The MWRI soil moisture products are able to effectively delineate the regions that are experiencing a considerable drought, highly in agreement with spatial patterns of precipitation and temperature anomalies. The results in this study give confidence in the soil moisture retrievals from the MWRI onboard Fengyun-3B. The integration of the newly derived products into the existing database will allow a better understanding the diurnal, seasonal and interannual variations, and long-term (35 year) changes of soil moisture at the global scale, consequently enhancing hydrological, meteorological, and climate studies.


IEEE Transactions on Geoscience and Remote Sensing | 2015

A Methodology to Determine Radio-Frequency Interference in AMSR2 Observations

Anne H. A. de Nijs; Robert M. Parinussa; Richard de Jeu; Jaap Schellekens; Thomas R. H. Holmes

A study to determine radio-frequency interference (RFI) in low-frequency passive microwave observations of the Advanced Microwave Scanning Radiometer-2 (AMSR2) is performed. RFI detection methods, such as the spectral difference method, have already been applied on microwave satellite sensors. However, these methods may result in false RFI detection, particularly in zones with extreme environmental conditions. To overcome this problem, this paper proposes an approach that uses the additional 7.3-GHz channel of the AMSR2 sensor in a new RFI detection method. This method uses calculated standard errors of estimate to detect RFI contamination in 6.9- and 7.3-GHz observations. It was found that 6.9-GHz observations are mainly contaminated in the USA, India, Japan, and parts of Europe. The 7.3-GHz observations are contaminated in South America, Ukraine, the Middle East, Southeast Asia, and Russia. The fact that these channels are not affected by RFI in exactly the same regions is useful for studies that prefer C-band brightness temperature observations (e.g., soil moisture retrieval algorithms). Therefore, a decision tree approach was set up to determine RFI and to select reliable brightness temperature observations in the lowest frequency free of any man-made contamination. The result is a reduction of the total contaminated pixels in the 6.9-GHz observations of 66% for horizontal observations and even 85% for vertical observations when 7.3 and 10.7 GHz are used. By linking RFI maps with civilization maps, this paper further shows that RFI sources at the C-band frequency are mainly located in urbanized areas.


Geophysical Research Letters | 2015

A framework for combining multiple soil moisture retrievals based on maximizing temporal correlation

Seokhyeon Kim; Robert M. Parinussa; Yi Y. Liu; Fiona Johnson; Ashish Sharma

A method for combining two microwave satellite soil moisture products by maximizing the temporal correlation with a reference data set has been developed. The method was applied to two global soil moisture data sets, Japan Aerospace Exploration Agency (JAXA) and Land Parameter Retrieval Model (LPRM), retrieved from the Advanced Microwave Scanning Radiometer 2 observations for the period 2012–2014. A global comparison revealed superior results of the combined product compared to the individual products against the reference data set of ERA-Interim volumetric water content. The global mean temporal correlation coefficient of the combined product with this reference was 0.52 which outperforms the individual JAXA (0.35) as well as the LPRM (0.45) product. Additionally, the performance was evaluated against in situ observations from the International Soil Moisture Network. The combined data set showed a significant improvement in temporal correlation coefficients in the validation compared to JAXA and minor improvements for the LPRM product.


Remote Sensing | 2016

Comparing and Combining Remotely Sensed Land Surface Temperature Products for Improved Hydrological Applications

Robert M. Parinussa; Venkat Lakshmi; Fiona Johnson; Ashish Sharma

Land surface temperature (LST) is an important variable that provides a valuable connection between the energy and water budget and is strongly linked to land surface hydrology. Space-borne remote sensing provides a consistent means for regularly observing LST using thermal infrared (TIR) and passive microwave observations each with unique strengths and weaknesses. The spatial resolution of TIR based LST observations is around 1 km, a major advantage when compared to passive microwave observations (around 10 km). However, a major advantage of passive microwaves is their cloud penetrating capability making them all-weather sensors whereas TIR observations are routinely masked under the presence of clouds and aerosols. In this study, a relatively simple combination approach that benefits from the cloud penetrating capacity of passive microwave sensors was proposed. In the first step, TIR and passive microwave LST products were compared over Australia for both anomalies and raw timeseries. A very high agreement was shown over the vast majority of the country with R2 typically ranging from 0.50 to 0.75 for the anomalies and from 0.80 to 1.00 for the raw timeseries. Then, the scalability of the passive microwave based LST product was examined and a pixel based merging approach through linear scaling was proposed. The individual and merged LST products were further compared against independent LST from the re-analysis model outputs. This comparison revealed that the TIR based LST product agrees best with the re-analysis data (R2 0.26 for anomalies and R2 0.76 for raw data), followed by the passive microwave LST product (R2 0.16 for anomalies and R2 0.66 for raw data) and the combined LST product (R2 0.18 for anomalies and R2 0.62 for raw data). It should be noted that the drop in performance comes with an increased revisit frequency of approximately 20% compared to the revised frequency of the TIR alone. Additionally, this comparison against re-analysis data was subdivided over Australia’s major climate zones and revealed that the relative agreement between the individual and combined LST products against the re-analysis data is consistent over these climate zones. These results are also consistent for both the anomalies and the raw time series. Finally, two examples were provided that demonstrate the proposed merging approach including an example for the Hunter Valley floods along Australia’s central coast that experienced significant flooding in April 2015.


Geophysical Research Letters | 2016

A quasi‐global assessment of changes in remotely sensed rainfall extremes with temperature

Conrad Wasko; Robert M. Parinussa; Ashish Sharma

The dependence between extreme rainfall and temperature is used to understand climatic relationships, constrain model predictions and evaluate future changes to rainfall. Understanding this dependence, however, is limited by the fact that many areas worldwide lack gauged data, particularly at short time scales. The advent of remote sensing allows a new insight into this dependence quasi-globally. Here, we address whether remotely sensed daily rainfall and temperature can be used in ungauged areas to understand extreme rainfall scaling with temperature. Using the multi-sensor Tropical Rainfall Measuring Mission 3B42 (v7) rainfall product and remotely sensed air temperature we examine the spatial homogeneity in remotely sensed rainfall scaling with temperature and demonstrate that it replicates the spatial variation in the scaling observed in ground data. Finally, changes to duration and percentile are examined showing that the scaling response is climatologically sensitive.


Remote Sensing | 2017

The Evaluation of Single-Sensor Surface Soil Moisture Anomalies over the Mainland of the People’s Republic of China

Robert M. Parinussa; Guojie Wang; Yi Y. Liu; Daniel Fiifi T. Hagan; Fenfang Lin; Robin van der Schalie; Richard de Jeu

In recent years, different space agencies have launched satellite missions that carry passive microwave instruments on-board that can measure surface soil moisture. Three currently operational missions are the Soil Moisture and Ocean Salinity (SMOS) mission developed by the European Space Agency (ESA), the Advanced Microwave Scanning Radiometer 2 (AMSR2) developed by the Japan Aerospace Exploration Agency (JAXA), and the Microwave Radiation Imager (MWRI) from China’s National Satellite Meteorological Centre (NSMC). In this study, the quality of surface soil moisture anomalies derived from these passive microwave instruments was sequentially assessed over the mainland of the People’s Republic of China. First, the impact of a recent update in the Land Parameter Retrieval Model (LPRM) was assessed for MWRI observations. Then, the soil moisture measurements retrieved from the X-band observations of MWRI were compared with those of AMSR2, followed by an internal comparison of the multiple frequencies of AMSR2. Finally, SMOS retrievals from two different algorithms were also included in the comparison. For each sequential step, processing and verification chains were specifically designed to isolate the impact of algorithm (version), observation frequency or instrument characteristics. Two verification techniques are used: the statistical Triple Collocation technique is used as the primary verification tool, while the precipitation-based Rvalue technique is used to confirm key results. Our results indicate a consistently better performance throughout the entire study area after the implementation of an update of the LPRM. We also find that passive microwave observations in the AMSR2 C-band frequency (6.9 GHz) have an advantage over the AMSR2 X-band frequency (10.7 GHz) over moderate to densely vegetated regions. This finding is in line with theoretical expectations as emitted soil radiation will become masked under a dense canopy with stricter thresholds for higher passive microwave frequencies. Both AMSR2 and MWRI make X-band observations; a direct comparison between them reveals a consistently higher quality obtained by AMSR2, specifically over semi-arid climate regimes. Unfortunately, Radio Frequency Interference hampers the usefulness of soil moisture products for the SMOS L-band mission, leading to a significantly reduced revisit time over the densely populated eastern part of the country. Nevertheless, our analysis demonstrates that soil moisture products from a number of multi-frequency microwave sensors are credible alternatives for this dedicated L-band mission over the mainland of the People’s Republic of China.


International Journal of Remote Sensing | 2018

Estimating fire severity and carbon emissions over Australian tropical savannahs based on passive microwave satellite observations

Xi Chen; Yi Y. Liu; Jason P. Evans; Robert M. Parinussa; Albert I. J. M. van Dijk; Marta Yebra

ABSTRACT We investigated the use of a recently developed satellite-based vegetation optical depth (VOD) data set to estimate fire severity and carbon emission over Australian tropical savannahs. VOD is sensitive to the dynamics of all aboveground vegetation and available nearly every two days. For areas burned during 2003–2010, we calculated the VOD change (ΔVOD) pre- and post-fire and the associated loss in the above ground biomass carbon. ΔVOD agreed well with the Normalized Burn Ratio change (ΔNBR) which is the metric used to estimate fire severity and carbon loss compared well with modelled emissions from the Global Fire Emissions Database (GFED). We found that the ΔVOD and ΔNBR are generally linearly related. The Pearson correlation coefficients (r) between VOD- and GFED-based fire carbon emissions for monthly and annual total estimates are very high, 0.92 and 0.96, respectively. A key feature of fire carbon emissions is the strong inter-annual variation, ranging from 21.1 Mt in 2010 to 84.3 Mt in 2004. This study demonstrates that a reasonable estimate of fire severity and carbon emissions can be achieved in a timely manner based on multiple satellite observations over Australian tropical savannahs, which can be complementary to the currently used approaches.

Collaboration


Dive into the Robert M. Parinussa's collaboration.

Top Co-Authors

Avatar

W. Wagner

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar

Wouter Dorigo

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yi Y. Liu

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Ashish Sharma

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Daniel Chung

Vienna University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fiona Johnson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge