Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert M. Shelby is active.

Publication


Featured researches published by Robert M. Shelby.


Ibm Journal of Research and Development | 2000

Holographic data storage

J. Ashley; M.-P Bernal; Geoffrey W. Burr; H. Coufal; H. Guenther; John A. Hoffnagle; C. M. Jefferson; Brian Marcus; R. M. Macfarlane; Robert M. Shelby; Glenn T. Sincerbox

We present an overview of our research effort on volume holographic digital data storage. Innovations, developments, and new insights gained in the design and operation of working storage platforms, novel optical components and techniques, data coding and signal processing algorithms, systems tradeoffs, materials testing and tradeoffs, and photon-gated storage materials are summarized.


Journal of Physical Chemistry Letters | 2011

Solvents' Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.

Bryan D. McCloskey; D. S. Bethune; Robert M. Shelby; G. Girishkumar; A. C. Luntz

Among the many important challenges facing the development of Li-air batteries, understanding the electrolytes role in producing the appropriate reversible electrochemistry (i.e., 2Li(+) + O2 + 2e(-) ↔ Li2O2) is critical. Quantitative differential electrochemical mass spectrometry (DEMS), coupled with isotopic labeling of oxygen gas, was used to study Li-O2 electrochemistry in various solvents, including carbonates (typical Li ion battery solvents) and dimethoxyethane (DME). In conjunction with the gas-phase DEMS analysis, electrodeposits formed during discharge on Li-O2 cell cathodes were characterized using ex situ analytical techniques, such as X-ray diffraction and Raman spectroscopy. Carbonate-based solvents were found to irreversibly decompose upon cell discharge. DME-based cells, however, produced mainly lithium peroxide on discharge. Upon cell charge, the lithium peroxide both decomposed to evolve oxygen and oxidized DME at high potentials. Our results lead to two conclusions; (1) coulometry has to be coupled with quantitative gas consumption and evolution data to properly characterize the rechargeability of Li-air batteries, and (2) chemical and electrochemical electrolyte stability in the presence of lithium peroxide and its intermediates is essential to produce a truly reversible Li-O2 electrochemistry.


Ibm Journal of Research and Development | 2008

Phase-change random access memory: a scalable technology

Simone Raoux; Geoffrey W. Burr; Matthew J. Breitwisch; C. T. Rettner; Yi-Chou Chen; Robert M. Shelby; Martin Salinga; Daniel Krebs; Shih-Hung Chen; Hsiang-Lan Lung; Chung Hon Lam

Nonvolatile RAM using resistance contrast in phase-change materials [or phase-change RAM (PCRAM)] is a promising technology for future storage-class memory. However, such a technology can succeed only if it can scale smaller in size, given the increasingly tiny memory cells that are projected for future technology nodes (i.e., generations). We first discuss the critical aspects that may affect the scaling of PCRAM, including materials properties, power consumption during programming and read operations, thermal cross-talk between memory cells, and failure mechanisms. We then discuss experiments that directly address the scaling properties of the phase-change materials themselves, including studies of phase transitions in both nanoparticles and ultrathin films as a function of particle size and film thickness. This work in materials directly motivated the successful creation of a series of prototype PCRAM devices, which have been fabricated and tested at phase-change material cross-sections with extremely small dimensions as low as 3 nm × 20 nm. These device measurements provide a clear demonstration of the excellent scaling potential offered by this technology, and they are also consistent with the scaling behavior predicted by extensive device simulations. Finally, we discuss issues of device integration and cell design, manufacturability, and reliability.


Journal of the American Chemical Society | 2011

On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries.

Bryan D. McCloskey; Rouven Scheffler; Angela Speidel; Donald S. Bethune; Robert M. Shelby; A. C. Luntz

Heterogeneous electrocatalysis has become a focal point in rechargeable Li-air battery research to reduce overpotentials in both the oxygen reduction (discharge) and especially oxygen evolution (charge) reactions. In this study, we show that past reports of traditional cathode electrocatalysis in nonaqueous Li-O(2) batteries were indeed true, but that gas evolution related to electrolyte solvent decomposition was the dominant process being catalyzed. In dimethoxyethane, where Li(2)O(2) formation is the dominant product of the electrochemistry, no catalytic activity (compared to pure carbon) is observed using the same (Au, Pt, MnO(2)) nanoparticles. Nevertheless, the onset potential of oxygen evolution is only slightly higher than the open circuit potential of the cell, indicating conventional oxygen evolution electrocatalysis may be unnecessary.


Journal of Physical Chemistry Letters | 2012

Limitations in Rechargeability of Li-O2 Batteries and Possible Origins

Bryan D. McCloskey; D. S. Bethune; Robert M. Shelby; T. Mori; R. Scheffler; A. Speidel; M. Sherwood; A. C. Luntz

Quantitative differential electrochemical mass spectrometry (DEMS) is used to measure the Coulombic efficiency of discharge and charge [(e(-)/O2)dis and (e(-)/O2)chg] and chemical rechargeability (characterized by the O2 recovery efficiency, OER/ORR) for Li-O2 electrochemistry in a variety of nonaqueous electrolytes. We find that none of the electrolytes studied are truly rechargeable, with OER/ORR <90% for all. Our findings emphasize that neither the overpotential for recharge nor capacity fade during cycling are adequate to assess rechargeability. Coulometry has to be coupled to quantitative measurements of the chemistry to measure the rechargeability truly. We show that rechargeability in the various electrolytes is limited both by chemical reaction of Li2O2 with the solvent and by electrochemical oxidation reactions during charging at potentials below the onset of electrolyte oxidation on an inert electrode. Possible mechanisms are suggested for electrolyte decomposition, which taken together, impose stringent conditions on the liquid electrolyte in Li-O2 batteries.


Optics Letters | 1985

Photon-gated hole burning: a new mechanism using two-step photoionization

A. Winnacker; Robert M. Shelby; R. M. Macfarlane

We have observed photon-gated spectral hole burning, i.e., hole burning that occurs only in the presence of an additional gating-light source. Gating enhancement factors of 10(4) were observed. In BaClF:Sm(2+) this involves two step photoionization of Sm(2+) and leads to persistent holes in the (4)F(0) --> (5)D(0) (687.9-nm) and (7)F(0) --> (5)D(1) (629.7-nm) absorption lines. The hole widths of 25 MHz at 2 K are much narrower than the inhomogeneous broadening of 16 GHz. The action spectrum of the gating shows a threshold behavior around 2.5 eV. Erasing studies show that Sm(3)+ acts as a trap for the released electrons. A remarkable and novel feature is that the holes can be recovered after temperature cycling to 300 K.


Optics Letters | 1997

Pixel-matched holographic data storage with megabit pages

Robert M. Shelby; John A. Hoffnagle; Geoffrey W. Burr; C. M. Jefferson; M.-P. Bernal; H. Coufal; Robert K. Grygier; H. Günther; R. M. Macfarlane; Glenn Tavernia Sincerbox

Digital data-page holograms consisting of 1024 x 1024 arrays of binary pixels have been stored and subsequently retrieved with an optical exposure consistent with a data rate 1 Gbit /s. Each input pixel was precisely registered with a single detector pixel, and a raw bit-error rate as low as 2.4 x 10(-6) was demonstrated with global-threshold detection. To our knowledge, this is the first demonstration of the often-cited goal of holographic data storage of megabit data pages and a gigabit-per-second data rate.


IEEE Transactions on Electron Devices | 2015

Experimental Demonstration and Tolerancing of a Large-Scale Neural Network (165 000 Synapses) Using Phase-Change Memory as the Synaptic Weight Element

Geoffrey W. Burr; Robert M. Shelby; Severin Sidler; Carmelo di Nolfo; Jun-Woo Jang; Irem Boybat; Rohit S. Shenoy; Pritish Narayanan; Kumar Virwani; Emanuele U. Giacometti; B. N. Kurdi; Hyunsang Hwang

Using 2 phase-change memory (PCM) devices per synapse, a 3-layer perceptron network with 164,885 synapses is trained on a subset (5000 examples) of the MNIST database of handwritten digits using a backpropagation variant suitable for NVM+selector crossbar arrays, obtaining a training (generalization) accuracy of 82.2% (82.9%). Using a neural network (NN) simulator matched to the experimental demonstrator, extensive tolerancing is performed with respect to NVM variability, yield, and the stochasticity, linearity and asymmetry of NVM-conductance response.


Science | 2009

Observation of the Role of Subcritical Nuclei in Crystallization of a Glassy Solid

Bong Sub Lee; Geoffrey W. Burr; Robert M. Shelby; Simone Raoux; C. T. Rettner; Stephanie N. Bogle; Kristof Darmawikarta; S. G. Bishop; John R. Abelson

Catching Glassy Crystallization The initial steps for crystallization are difficult to study in atomic materials because they occur on very small length- and time scales. Measurements can be made on surfaces, or by using colloids as analogs, but ideally one would like to observe the ordering phenomena in atomic solids in bulk. Lee et al. (p. 980; see the Perspective by Gibson) use fluctuation transmission electron microscopy to explore the role of nucleation in propagating crystallization and discovered that formation of subcritical nuclei strongly influences the crystallization process. Fluctuation transmission electron microscopy images nanoscale nuclei and their influence on subsequent crystallization. Phase transformation generally begins with nucleation, in which a small aggregate of atoms organizes into a different structural symmetry. The thermodynamic driving forces and kinetic rates have been predicted by classical nucleation theory, but observation of nanometer-scale nuclei has not been possible, except on exposed surfaces. We used a statistical technique called fluctuation transmission electron microscopy to detect nuclei embedded in a glassy solid, and we used a laser pump-probe technique to determine the role of these nuclei in crystallization. This study provides a convincing proof of the time- and temperature-dependent development of nuclei, information that will play a critical role in the development of advanced materials for phase-change memories.


Optics Letters | 2001

Volume holographic data storage at an areal density of 250 gigapixels/in. 2

Geoffrey W. Burr; C. Michael Jefferson; H. Coufal; Mark C. Jurich; John A. Hoffnagle; R. M. Macfarlane; Robert M. Shelby

One thousand volume holographic data pages, each containing 1x10(6)pixels , are stored in a common volume of LiNbO(3) :Fe by use of the 90 degrees geometry. An effective transverse aperture of 1.6 mm x 1.6mm , realized by repetition of this experiment at each of the eight surrounding locations, results in a demonstrated areal density of 394pixels/mum (2) (254 Gpixels/in. (2)) . Short-focal-length Fourier optics provide a tightly confined object beam at the crystal; the reference beam is angle multiplexed. Data pages retrieved with a 1024 x 1024 CCD camera are processed to remap bad spatial light modulator pixels and to compensate for global and local pixel misregistration and are then decoded with a strong 8-bits-from-12-pixels modulation code. The worst-case raw bit-error rate (BER) before error correction was 1.1x10(-3) , sufficient to deliver a user BER of 10(-12) at an overall code rate of 0.61 user bits per detector pixel. This result corresponds to 1.08% of the well-known theoretical volumetric density limit of 1/lambda(3) .

Researchain Logo
Decentralizing Knowledge