Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Martí is active.

Publication


Featured researches published by Robert Martí.


Image and Vision Computing | 2007

Review: Which is the best way to organize/classify images by content?

Anna Bosch; Xavier Muñoz; Robert Martí

Thousands of images are generated every day, which implies the necessity to classify, organise and access them using an easy, faster and efficient way. Scene classification, the classification of images into semantic categories (e.g. coast, mountains and streets), is a challenging and important problem nowadays. Many different approaches concerning scene classification have been proposed in the last few years. This article presents a detailed review of some of the most commonly used scene classification approaches. Furthermore, the surveyed techniques have been tested and their accuracy evaluated. Comparative results are shown and discussed giving the advantages and disadvantages of each methodology.


international conference of the ieee engineering in medicine and biology society | 2008

A Novel Breast Tissue Density Classification Methodology

Arnau Oliver; Jordi Freixenet; Robert Martí; Josep Pont; Elsa Pérez; Erika R. E. Denton; Reyer Zwiggelaar

It has been shown that the accuracy of mammographic abnormality detection methods is strongly dependent on the breast tissue characteristics, where a dense breast drastically reduces detection sensitivity. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. Here, we describe the development of an automatic breast tissue classification methodology, which can be summarized in a number of distinct steps: 1) the segmentation of the breast area into fatty versus dense mammographic tissue; 2) the extraction of morphological and texture features from the segmented breast areas; and 3) the use of a Bayesian combination of a number of classifiers. The evaluation, based on a large number of cases from two different mammographic data sets, shows a strong correlation ( and 0.67 for the two data sets) between automatic and expert-based Breast Imaging Reporting and Data System mammographic density assessment.


Computer Methods and Programs in Biomedicine | 2012

A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images

Soumya Ghose; Arnau Oliver; Robert Martí; Xavier Lladó; Joan C. Vilanova; Jordi Freixenet; Jhimli Mitra; Désiré Sidibé; Fabrice Meriaudeau

Prostate segmentation is a challenging task, and the challenges significantly differ from one imaging modality to another. Low contrast, speckle, micro-calcifications and imaging artifacts like shadow poses serious challenges to accurate prostate segmentation in transrectal ultrasound (TRUS) images. However in magnetic resonance (MR) images, superior soft tissue contrast highlights large variability in shape, size and texture information inside the prostate. In contrast poor soft tissue contrast between prostate and surrounding tissues in computed tomography (CT) images pose a challenge in accurate prostate segmentation. This article reviews the methods developed for prostate gland segmentation TRUS, MR and CT images, the three primary imaging modalities that aids prostate cancer diagnosis and treatment. The objective of this work is to study the key similarities and differences among the different methods, highlighting their strengths and weaknesses in order to assist in the choice of an appropriate segmentation methodology. We define a new taxonomy for prostate segmentation strategies that allows first to group the algorithms and then to point out the main advantages and drawbacks of each strategy. We provide a comprehensive description of the existing methods in all TRUS, MR and CT modalities, highlighting their key-points and features. Finally, a discussion on choosing the most appropriate segmentation strategy for a given imaging modality is provided. A quantitative comparison of the results as reported in literature is also presented.


PLOS ONE | 2014

Volumetric breast density estimation from Full-Field Digital Mammograms: A validation study

Albert Gubern-Mérida; Michiel Kallenberg; Bram Platel; Ritse M. Mann; Robert Martí; Nico Karssemeijer

A method is presented for estimation of dense breast tissue volume from mammograms obtained with full-field digital mammography (FFDM). The thickness of dense tissue mapping to a pixel is determined by using a physical model of image acquisition. This model is based on the assumption that the breast is composed of two types of tissue, fat and parenchyma. Effective linear attenuation coefficients of these tissues are derived from empirical data as a function of tube voltage (kVp), anode material, filtration, and compressed breast thickness. By employing these, tissue composition at a given pixel is computed after performing breast thickness compensation, using a reference value for fatty tissue determined by the maximum pixel value in the breast tissue projection. Validation has been performed using 22 FFDM cases acquired with a GE Senographe 2000D by comparing the volume estimates with volumes obtained by semi-automatic segmentation of breast magnetic resonance imaging (MRI) data. The correlation between MRI and mammography volumes was 0.94 on a per image basis and 0.97 on a per patient basis. Using the dense tissue volumes from MRI data as the gold standard, the average relative error of the volume estimates was 13.6%.


Computerized Medical Imaging and Graphics | 2009

A textural approach for mass false positive reduction in mammography

Xavier Lladó; Arnau Oliver; Jordi Freixenet; Robert Martí; Joan Martí

During the last decade several algorithms have been proposed for automatic mass detection in mammographic images. However, almost all these methods suffer from a high number of false positives. In this paper we propose a new approach for tackling this false positive reduction problem. The key point of our proposal is the use of Local Binary Patterns (LBP) for representing the textural properties of the masses. We extend the basic LBP histogram descriptor into a spatially enhanced histogram which encodes both the local region appearance and the spatial structure of the masses. Support Vector Machines (SVM) are then used for classifying the true masses from the ones being actually normal parenchyma. Our approach is evaluated using 1792 ROIs extracted from the DDSM database. The experiments show that LBP are effective and efficient descriptors for mammographic masses. Moreover, the comparison with current methods illustrates that our proposal obtains a better performance.


Computers in Biology and Medicine | 2015

Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI

Guillaume Lemaitre; Robert Martí; Jordi Freixenet; Joan C. Vilanova; Paul Walker; Fabrice Meriaudeau

Prostate cancer is the second most diagnosed cancer of men all over the world. In the last few decades, new imaging techniques based on Magnetic Resonance Imaging (MRI) have been developed to improve diagnosis. In practise, diagnosis can be affected by multiple factors such as observer variability and visibility and complexity of the lesions. In this regard, computer-aided detection and computer-aided diagnosis systems have been designed to help radiologists in their clinical practice. Research on computer-aided systems specifically focused for prostate cancer is a young technology and has been part of a dynamic field of research for the last 10 years. This survey aims to provide a comprehensive review of the state-of-the-art in this lapse of time, focusing on the different stages composing the work-flow of a computer-aided system. We also provide a comparison between studies and a discussion about the potential avenues for future research. In addition, this paper presents a new public online dataset which is made available to the research community with the aim of providing a common evaluation framework to overcome some of the current limitations identified in this survey.


Neuroradiology | 2012

Automated detection of multiple sclerosis lesions in serial brain MRI

Xavier Lladó; Onur Ganiler; Arnau Oliver; Robert Martí; Jordi Freixenet; Laia Valls; Joan C. Vilanova; Lluís Ramió-Torrentà; Alex Rovira

IntroductionMultiple sclerosis (MS) is a serious disease typically occurring in the brain whose diagnosis and efficacy of treatment monitoring are vital. Magnetic resonance imaging (MRI) is frequently used in serial brain imaging due to the rich and detailed information provided.MethodsTime-series analysis of images is widely used for MS diagnosis and patient follow-up. However, conventional manual methods are time-consuming, subjective, and error-prone. Thus, the development of automated techniques for the detection and quantification of MS lesions is a major challenge.ResultsThis paper presents an up-to-date review of the approaches which deal with the time-series analysis of brain MRI for detecting active MS lesions and quantifying lesion load change. We provide a comprehensive reference source for researchers in which several approaches to change detection and quantification of MS lesions are investigated and classified. We also analyze the results provided by the approaches, discuss open problems, and point out possible future trends.ConclusionLesion detection approaches are required for the detection of static lesions and for diagnostic purposes, while either quantification of detected lesions or change detection algorithms are needed to follow up MS patients. However, there is not yet a single approach that can emerge as a standard for the clinical practice, automatically providing an accurate MS lesion evolution quantification. Future trends will focus on combining the lesion detection in single studies with the analysis of the change detection in serial MRI.


Medical Image Analysis | 2015

Automated localization of breast cancer in DCE-MRI

Albert Gubern-Mérida; Robert Martí; Jaime Melendez; Jakob L. Hauth; Ritse M. Mann; Nico Karssemeijer; Bram Platel

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is increasingly being used for the detection and diagnosis of breast cancer. Compared to mammography, DCE-MRI provides higher sensitivity, however its specificity is variable. Moreover, DCE-MRI data analysis is time consuming and depends on reader expertise. The aim of this work is to propose a novel automated breast cancer localization system for DCE-MRI. Such a system can be used to support radiologists in DCE-MRI analysis by marking suspicious areas. The proposed method initially corrects for motion artifacts and segments the breast. Subsequently, blob and relative enhancement voxel features are used to locate lesion candidates. Finally, a malignancy score for each lesion candidate is obtained using region-based morphological and kinetic features computed on the segmented lesion candidate. We performed experiments to compare the use of different classifiers in the region classification stage and to study the effect of motion correction in the presented system. The performance of the algorithm was assessed using free-response operating characteristic (FROC) analysis. For this purpose, a dataset of 209 DCE-MRI studies was collected. It is composed of 95 DCE-MRI studies with 105 breast cancers (55 mass-like and 50 non-mass-like malignant lesions) and 114 DCE-MRI studies from women participating in a screening program which were diagnosed to be normal. At 4 false positives per normal case, 89% of the breast cancers (91% and 86% for mass-like and non-mass-like malignant lesions, respectively) were correctly detected.


IEEE Journal of Biomedical and Health Informatics | 2015

Breast Segmentation and Density Estimation in Breast MRI: A Fully Automatic Framework

Albert Gubern-Mérida; Michiel Kallenberg; Ritse M. Mann; Robert Martí; Nico Karssemeijer

Breast density measurement is an important aspect in breast cancer diagnosis as dense tissue has been related to the risk of breast cancer development. The purpose of this study is to develop a method to automatically compute breast density in breast MRI. The framework is a combination of image processing techniques to segment breast and fibroglandular tissue. Intra- and interpatient signal intensity variability is initially corrected. The breast is segmented by automatically detecting body-breast and air-breast surfaces. Subsequently, fibroglandular tissue is segmented in the breast area using expectation-maximization. A dataset of 50 cases with manual segmentations was used for evaluation. Dice similarity coefficient (DSC), total overlap, false negative fraction (FNF), and false positive fraction (FPF) are used to report similarity between automatic and manual segmentations. For breast segmentation, the proposed approach obtained DSC, total overlap, FNF, and FPF values of 0.94, 0.96, 0.04, and 0.07, respectively. For fibroglandular tissue segmentation, we obtained DSC, total overlap, FNF, and FPF values of 0.80, 0.85, 0.15, and 0.22, respectively. The method is relevant for researchers investigating breast density as a risk factor for breast cancer and all the described steps can be also applied in computer aided diagnosis systems.


Medical Image Analysis | 2012

A spline-based non-linear diffeomorphism for multimodal prostate registration

Jhimli Mitra; Zoltan Kato; Robert Martí; Arnau Oliver; Xavier Lladó; Désiré Sidibé; Soumya Ghose; Joan C. Vilanova; Josep Comet; Fabrice Meriaudeau

This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively.

Collaboration


Dive into the Robert Martí's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jhimli Mitra

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge