Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xavier Lladó is active.

Publication


Featured researches published by Xavier Lladó.


Pattern Recognition | 2010

A state of the art in structured light patterns for surface profilometry

Joaquim Salvi; Sergio Fernandez; Tomislav Pribanić; Xavier Lladó

Shape reconstruction using coded structured light is considered one of the most reliable techniques to recover object surfaces. Having a calibrated projector-camera pair, a light pattern is projected onto the scene and imaged by the camera. Correspondences between projected and recovered patterns are found and used to extract 3D surface information. This paper presents an up-to-date review and a new classification of the existing techniques. Some of these techniques have been implemented and compared, obtaining both qualitative and quantitative results. The advantages and drawbacks of the different patterns and their potentials are discussed.


Computer Methods and Programs in Biomedicine | 2011

A review of atlas-based segmentation for magnetic resonance brain images

Mariano Cabezas; Arnau Oliver; Xavier Lladó; Jordi Freixenet; Meritxell Bach Cuadra

Normal and abnormal brains can be segmented by registering the target image with an atlas. Here, an atlas is defined as the combination of an intensity image (template) and its segmented image (the atlas labels). After registering the atlas template and the target image, the atlas labels are propagated to the target image. We define this process as atlas-based segmentation. In recent years, researchers have investigated registration algorithms to match atlases to query subjects and also strategies for atlas construction. In this paper we present a review of the automated approaches for atlas-based segmentation of magnetic resonance brain images. We aim to point out the strengths and weaknesses of atlas-based methods and suggest new research directions. We use two different criteria to present the methods. First, we refer to the algorithms according to their atlas-based strategy: label propagation, multi-atlas methods, and probabilistic techniques. Subsequently, we classify the methods according to their medical target: the brain and its internal structures, tissue segmentation in healthy subjects, tissue segmentation in fetus, neonates and elderly subjects, and segmentation of damaged brains. A quantitative comparison of the results reported in the literature is also presented.


Information Sciences | 2012

Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches

Xavier Lladó; Arnau Oliver; Mariano Cabezas; Jordi Freixenet; Joan C. Vilanova; Ana Quiles; Laia Valls; Lluís Ramió-Torrentí; ílex Rovira

Automatic segmentation of multiple sclerosis (MS) lesions in brain MRI has been widely investigated in recent years with the goal of helping MS diagnosis and patient follow-up. However, the performance of most of the algorithms still falls far below expert expectations. In this paper, we review the main approaches to automated MS lesion segmentation. The main features of the segmentation algorithms are analysed and the most recent important techniques are classified into different strategies according to their main principle, pointing out their strengths and weaknesses and suggesting new research directions. A qualitative and quantitative comparison of the results of the approaches analysed is also presented. Finally, possible future approaches to MS lesion segmentation are discussed.


Computer Methods and Programs in Biomedicine | 2012

A survey of prostate segmentation methodologies in ultrasound, magnetic resonance and computed tomography images

Soumya Ghose; Arnau Oliver; Robert Martí; Xavier Lladó; Joan C. Vilanova; Jordi Freixenet; Jhimli Mitra; Désiré Sidibé; Fabrice Meriaudeau

Prostate segmentation is a challenging task, and the challenges significantly differ from one imaging modality to another. Low contrast, speckle, micro-calcifications and imaging artifacts like shadow poses serious challenges to accurate prostate segmentation in transrectal ultrasound (TRUS) images. However in magnetic resonance (MR) images, superior soft tissue contrast highlights large variability in shape, size and texture information inside the prostate. In contrast poor soft tissue contrast between prostate and surrounding tissues in computed tomography (CT) images pose a challenge in accurate prostate segmentation. This article reviews the methods developed for prostate gland segmentation TRUS, MR and CT images, the three primary imaging modalities that aids prostate cancer diagnosis and treatment. The objective of this work is to study the key similarities and differences among the different methods, highlighting their strengths and weaknesses in order to assist in the choice of an appropriate segmentation methodology. We define a new taxonomy for prostate segmentation strategies that allows first to group the algorithms and then to point out the main advantages and drawbacks of each strategy. We provide a comprehensive description of the existing methods in all TRUS, MR and CT modalities, highlighting their key-points and features. Finally, a discussion on choosing the most appropriate segmentation strategy for a given imaging modality is provided. A quantitative comparison of the results as reported in literature is also presented.


medical image computing and computer assisted intervention | 2007

False positive reduction in mammographic mass detection using local binary patterns

Arnau Oliver; Xavier Lladó; Jordi Freixenet; Joan Martí

In this paper we propose a new approach for false positive reduction in the field of mammographic mass detection. The goal is to distinguish between the true recognized masses and the ones which actually are normal parenchyma. Our proposal is based on Local Binary Patterns (LBP) for representing salient micro-patterns and preserving at the same time the spatial structure of the masses. Once the descriptors are extracted, Support Vector Machines (SVM) are used for classifying the detected masses. We test our proposal using a set of 1792 suspicious regions of interest extracted from the DDSM database. Exhaustive experiments illustrate that LBP features are effective and efficient for false positive reduction even at different mass sizes, a critical aspect in mass detection systems. Moreover, we compare our proposal with current methods showing that LBP obtains better performance.


Computerized Medical Imaging and Graphics | 2009

A textural approach for mass false positive reduction in mammography

Xavier Lladó; Arnau Oliver; Jordi Freixenet; Robert Martí; Joan Martí

During the last decade several algorithms have been proposed for automatic mass detection in mammographic images. However, almost all these methods suffer from a high number of false positives. In this paper we propose a new approach for tackling this false positive reduction problem. The key point of our proposal is the use of Local Binary Patterns (LBP) for representing the textural properties of the masses. We extend the basic LBP histogram descriptor into a spatially enhanced histogram which encodes both the local region appearance and the spatial structure of the masses. Support Vector Machines (SVM) are then used for classifying the true masses from the ones being actually normal parenchyma. Our approach is evaluated using 1792 ROIs extracted from the DDSM database. The experiments show that LBP are effective and efficient descriptors for mammographic masses. Moreover, the comparison with current methods illustrates that our proposal obtains a better performance.


Knowledge Based Systems | 2012

Automatic microcalcification and cluster detection for digital and digitised mammograms

Arnau Oliver; Albert Torrent; Xavier Lladó; Meritxell Tortajada; Lidia Tortajada; Melcior Sentís; Jordi Freixenet; Reyer Zwiggelaar

In this paper we present a knowledge-based approach for the automatic detection of microcalcifications and clusters in mammographic images. Our proposal is based on using local features extracted from a bank of filters to obtain a local description of the microcalcifications morphology. The developed approach performs an initial training step in order to automatically learn and select the most salient features, which are subsequently used in a boosted classifier to perform the detection of individual microcalcifications. Subsequently, the microcalcification detection method is extended in order to detect clusters. The validity of our approach is extensively demonstrated using two digitised databases and one full-field digital database. The experimental evaluation is performed in terms of ROC analysis for the microcalcification detection and FROC analysis for the cluster detection, resulting in better than 80% sensitivity at 1 false positive cluster per image.


Journal of Digital Imaging | 2010

A Statistical Approach for Breast Density Segmentation

Arnau Oliver; Xavier Lladó; Elsa Pérez; Josep Pont; Erika R. E. Denton; Jordi Freixenet; Joan Martí

Studies reported in the literature indicate that the increase in the breast density is one of the strongest indicators of developing breast cancer. In this paper, we present an approach to automatically evaluate the density of a breast by segmenting its internal parenchyma in either fatty or dense class. Our approach is based on a statistical analysis of each pixel neighbourhood for modelling both tissue types. Therefore, we provide connected density clusters taking the spatial information of the breast into account. With the aim of showing the robustness of our approach, the experiments are performed using two different databases: the well-known Mammographic Image Analysis Society digitised database and a new full-field digital database of mammograms from which we have annotations provided by radiologists. Quantitative and qualitative results show that our approach is able to correctly detect dense breasts, segmenting the tissue type accordingly.


Neuroradiology | 2012

Automated detection of multiple sclerosis lesions in serial brain MRI

Xavier Lladó; Onur Ganiler; Arnau Oliver; Robert Martí; Jordi Freixenet; Laia Valls; Joan C. Vilanova; Lluís Ramió-Torrentà; Alex Rovira

IntroductionMultiple sclerosis (MS) is a serious disease typically occurring in the brain whose diagnosis and efficacy of treatment monitoring are vital. Magnetic resonance imaging (MRI) is frequently used in serial brain imaging due to the rich and detailed information provided.MethodsTime-series analysis of images is widely used for MS diagnosis and patient follow-up. However, conventional manual methods are time-consuming, subjective, and error-prone. Thus, the development of automated techniques for the detection and quantification of MS lesions is a major challenge.ResultsThis paper presents an up-to-date review of the approaches which deal with the time-series analysis of brain MRI for detecting active MS lesions and quantifying lesion load change. We provide a comprehensive reference source for researchers in which several approaches to change detection and quantification of MS lesions are investigated and classified. We also analyze the results provided by the approaches, discuss open problems, and point out possible future trends.ConclusionLesion detection approaches are required for the detection of static lesions and for diagnostic purposes, while either quantification of detected lesions or change detection algorithms are needed to follow up MS patients. However, there is not yet a single approach that can emerge as a standard for the clinical practice, automatically providing an accurate MS lesion evolution quantification. Future trends will focus on combining the lesion detection in single studies with the analysis of the change detection in serial MRI.


Journal of Magnetic Resonance Imaging | 2015

Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations

Sergi Valverde; Arnau Oliver; Mariano Cabezas; Eloy Roura; Xavier Lladó

Ground‐truth annotations from the well‐known Internet Brain Segmentation Repository (IBSR) datasets consider Sulcal cerebrospinal fluid (SCSF) voxels as gray matter. This can lead to bias when evaluating the performance of tissue segmentation methods. In this work we compare the accuracy of 10 brain tissue segmentation methods analyzing the effects of SCSF ground‐truth voxels on accuracy estimations.

Collaboration


Dive into the Xavier Lladó's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jhimli Mitra

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge