Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Norman is active.

Publication


Featured researches published by Robert Norman.


Geophysical Research Letters | 2015

Interplanetary shocks and the resulting geomagnetically induced currents at the equator

B. A. Carter; Rezy Pradipta; A. J. Halford; Robert Norman; Kefei Zhang

Geomagnetically induced currents (GICs) caused by interplanetary shocks represent a serious space weather threat to modern technological infrastructure. The arrival of interplanetary shocks drives magnetosphere and ionosphere current systems, which then induce electric currents at ground level. The impact of these currents at high latitudes has been extensively researched, but the magnetic equator has been largely overlooked. In this paper, we investigate the potential effects of interplanetary shocks on the equatorial region and demonstrate that their magnetic signature is amplified by the equatorial electrojet. This local amplification substantially increases the regions susceptibility to GICs. Importantly, this result applies to both geomagnetic storms and quiet periods and thus represents a paradigm shift in our understanding of adverse space weather impacts on technological infrastructure.


Journal of Geophysical Research | 2016

Global equatorial plasma bubble occurrence during the 2015 St. Patrick's Day storm

B. A. Carter; Rezy Pradipta; John M. Retterer; K. M. Groves; C. E. Valladares; Ronald G. Caton; C. Bridgwood; Robert Norman; Kefei Zhang

An analysis of the occurrence of equatorial plasma bubbles (EPBs) around the world during the 2015 St. Patricks Day geomagnetic storm is presented. A network of 12 Global Positioning System receivers spanning from South America to Southeast Asia was used, in addition to colocated VHF receivers at three stations and four nearby ionosondes. The suppression of postsunset EPBs was observed across most longitudes over 2 days. The EPB observations were compared to calculations of the linear Rayleigh-Taylor growth rate using coupled thermosphere-ionosphere modeling, which successfully modeled the transition of favorable EPB growth from postsunset to postmidnight hours during the storm. The mechanisms behind the growth of postmidnight EPBs during this storm were investigated. While the latter stages of postmidnight EPB growth were found to be dominated by disturbance dynamo effects, the initial stages of postmidnight EPB growth close to local midnight were found to be controlled by the higher altitudes of the plasma (i.e., the gravity term). Modeling and observations revealed that during the storm the ionospheric plasma was redistributed to higher altitudes in the low-latitude region, which made the plasma more susceptible to Rayleigh-Taylor growth prior to the dominance of the disturbance dynamo in the eventual generation of postmidnight EPBs.


Geophysical Research Letters | 2014

Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp

B. A. Carter; John M. Retterer; K. M. Groves; Ronald G. Caton; L. McNamara; C. Bridgwood; M. Francis; Michael Terkildsen; Robert Norman; Kefei Zhang

Describing the day-to-day variability of Equatorial Plasma Bubble (EPB) occurrence remains a significant challenge. In this study we use the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIEGCM), driven by solar (F10.7) and geomagnetic (Kp) activity indices, to study daily variations of the linear Rayleigh-Taylor (R-T) instability growth rate in relation to the measured scintillation strength at five longitudinally distributed stations. For locations characterized by generally favorable conditions for EPB growth (i.e., within the scintillation season for that location), we find that the TIEGCM is capable of identifying days when EPB development, determined from the calculated R-T growth rate, is suppressed as a result of geomagnetic activity. Both observed and modeled upward plasma drifts indicate that the prereversal enhancement scales linearly with Kp from several hours prior, from which it is concluded that even small Kp changes cause significant variations in daily EPB growth.


Journal of Geophysical Research | 2014

Real-time retrieval of precipitable water vapor from GPS precise point positioning

Yubin Yuan; Kefei Zhang; Witold Rohm; Suelynn Choy; Robert Norman; Chuan-Sheng Wang

Sensing of precipitable water vapor (PWV) using the Global Positioning System (GPS) has been intensively investigated in the past 2 decades. However, it still remains a challenging task at a high temporal resolution and in the real-time mode. In this study the accuracy of real-time zenith total delay (ZTD) and PWV using the GPS precise point positioning (PPP) technique is investigated. GPS observations in a 1 month period from 20 globally distributed stations are selected for testing. The derived real-time ZTDs at most stations agree well with the tropospheric products from the International Global Navigation Satellite Systems Service, and the root-mean-square errors (RMSEs) are <13 mm, which meet the threshold value of 15 mm if ZTDs are input to numerical weather prediction models. The RMSE of the retrieved PWVs in comparison with the radiosonde-derived values are <= 3 mm, which is the threshold RMSE of PWVs as inputs to weather nowcasting. The theoretical accuracy of PWVs is also discussed, and 3 mm quality of PWVs is proved achievable in different temperature and humidity conditions. This implies that the real-time GPS PPP technique can be complementary to current atmospheric sounding systems, especially for nowcasting of extreme weather due to its real-time, all-day, and all-weather capabilities and high temporal resolutions.


Journal of Geophysical Research | 2014

An analysis of the quiet time day‐to‐day variability in the formation of postsunset equatorial plasma bubbles in the Southeast Asian region

B. A. Carter; John M. Retterer; M. Francis; Michael Terkildsen; R. Marshall; Robert Norman; Kefei Zhang

Presented is an analysis of the occurrence of postsunset Equatorial Plasma Bubbles (EPBs) detected using a Global Positioning System (GPS) receiver at Vanimo. The three year data set shows that the EPB occurrence maximizes (minimizes) during the equinoxes (solstices), in good agreement with previous findings. The Vanimo ionosonde station is used with the GPS receiver in an analysis of the day-to-day EPB occurrence variability during the 2000 equinox period. A superposed epoch analysis (SEA) reveals that the altitude, and the change in altitude, of the F layer height is ∼1 standard deviation (1σ) larger on the days for which EPBs were detected, compared to non-EPB days. These results are then compared to results from the Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM), which show strong similarities with the observations. The TIEGCM is used to calculate the flux-tube integrated Rayleigh-Taylor (R-T) instability linear growth rate. A SEA reveals that the modeled R-T growth rate is 1σ higher on average for EPB days compared to non-EPB days, and that the upward plasma drift is the most dominant contributor. It is further demonstrated that the TIEGCMs success in describing the observed daily EPB variability during the scintillation season resides in the variations caused by geomagnetic activity (as parameterized by Kp) rather than solar EUV flux (as parameterized by F10.7). Geomagnetic activity varies the modeled high-latitude plasma convection and the associated Joule heating that affects the low-latitude F region dynamo, and consequently the equatorial upward plasma drift. Key Points Day-to-day EPB occurrence in Southeast Asia investigated using ground-based GPS TIEGCM exhibits similiar daily variability to the EPB observations Small changes in Kp strongly influence daily EPB occurrence variability.


Gps Solutions | 2012

A new two-step algorithm for ionospheric tomography solution

Debao Wen; Yong Wang; Robert Norman

Ionospheric tomography inverse algorithms are usually an ill-conditioned problem because the geometric distribution of continuously operating reference GPS stations is not ideal for this task. In order to cope with such ill-conditioning, a new tomographic algorithm, termed two-step algorithm (TSA), is presented. The electron density is estimated in two steps: Phillips smoothing method (PSM) is first used to resolve the ill-conditioned problem in the ionospheric tomography system, and then, the PSM solution is input as an initial value to the multiplicative algebraic reconstruction technique (MART) and iteratively improved. Numerical simulations using the International Reference Ionosphere 2007 model demonstrate that the TSA is applicable to GPS-based ionospheric tomography reconstruction and is superior to PSM and MART when these techniques are used alone. The new algorithm is applied to reconstruct the ionospheric electron density distribution over China using GPS observations, and a comparison with ionosonde observations is made.


Geophysical Research Letters | 2014

Using solar wind data to predict daily GPS scintillation occurrence in the African and Asian low‐latitude regions

B. A. Carter; John M. Retterer; K. Wiens; S. Wing; K. M. Groves; Ronald G. Caton; C. Bridgwood; M. Francis; Michael Terkildsen; Robert Norman; Kefei Zhang

The feasibility of predicting the daily occurrence of Global Positioning System scintillation events using forecasts of common geophysical indices to drive a physics-based model of the system is demonstrated over a 5 month period for the African and Asian longitude sectors. The output from the Wing Kp model, which uses solar wind data to predict the geomagnetic activity level up to 4 h in advance, was used to drive the National Center for Atmospheric Research thermosphere/ionosphere model, from which the strength of the Rayleigh-Taylor instability growth rate was calculated to determine the likelihood of scintillation. It is found that the physics-based model demonstrates superior skill to an empirical scintillation model (Wideband Model (WBMOD)) in forecasting scintillation suppression events during seasons when scintillation is common. However, neither of the models driven in this way possess the ability to forecast isolated scintillation events during transitional and off-peak seasons.


Journal of Geophysical Research | 2016

Geomagnetically induced currents around the world during the 17 March 2015 storm

B. A. Carter; Rezy Pradipta; James M. Weygand; M. Piersanti; Antti Pulkkinen; Mark B. Moldwin; Robert Norman; Kefei Zhang

Geomagnetically induced currents (GICs) represent a significant space weather issue for power grid and pipeline infrastructure, particularly during severe geomagnetic storms. In this study, magnetometer data collected from around the world are analyzed to investigate the GICs caused by the 2015 St. Patricks Day storm. While significant GIC activity in the high-latitude regions due to storm-time substorm activity is shown for this event, enhanced GIC activity was also measured at two equatorial stations in the American and South-East Asian sectors. This equatorial GIC activity is closely examined, and it is shown that it is present both during the arrival of the interplanetary shock at the storm sudden commencement (SSC) in South-East Asia and during the main phase of the storm ∼ 10 hours later in South America. The SSC caused magnetic field variations at the equator in South-East Asia that were twice the magnitude of those observed only a few degrees to the north, strongly indicating that the equatorial electrojet (EEJ) played a significant role. The large equatorial magnetic field variations measured in South America are also examined and the coincident solar wind data are used to investigate the causes of the sudden changes in the EEJ ∼ 10 hours into the storm. From this analysis it is concluded that sudden magnetopause current increases due to increases in the solar wind dynamic pressure, and the sudden changes in the resultant magnetospheric and ionospheric current systems, are the primary drivers of equatorial GICs.


international geoscience and remote sensing symposium | 2010

A study on the relationship between ionospheric correction and data control for GPS radio occultation in Australia

Kefei Zhang; John Le Marshall; Robert Norman; Chuan-Sheng Wang; Erjiang Fu; Y. Li; Yuriy Kuleshov

GPS radio occultation, (RO) is an emerging and robust space-based earth observation system, with the potential for atmospheric profiling and meteorological applications. GPS RO requires GPS receivers onboard Low Earth Orbit (LEO) satellites to measure the radio signals from GPS satellites so that the atmospheric profiles of parameters such as temperature, pressure and water vapour can be obtained via a complicated atmospheric retrieval process. This research focuses on the ionospheric correction using the Radio Occultation Processing Package (ROPP) to investigate the effect from ionosphere for GPS radio occultation in the Australia region. The MSISE-90 model with the statistical optimization method produced the best results for altitudes greater than 40 km. The influence from the ionosphere can be removed using the generic Lc method which produced the best results for altitudes less than 40 km.


Progress in Earth and Planetary Science | 2018

Unseasonal development of post-sunset F-region irregularities over Southeast Asia on 28 July 2014: 1. Forcing from above?

B. A. Carter; S. Tulasi Ram; Rezy Pradipta; John M. Retterer; Robert Norman; Julie Currie; K. M. Groves; Ronald G. Caton; Michael Terkildsen; Tatsuhiro Yokoyama; Kefei Zhang

AbstractThis contribution is the first of a two-part investigation into an unseasonal post-sunset equatorial F-region irregularity (EFI) event over the Southeast Asian region on the evening of 28 July 2014. Ground-based GPS scintillation data, space-based GPS radio occultation (RO) data, and ionosonde data show the existence of EFIs shortly after sunset over a region spanning 30° in longitude and 40° in latitude, centered on the geomagnetic equator. This post-sunset EFI event was observed during a time of the year when post-sunset equatorial plasma bubbles (EPBs) are very infrequent in the Southeast Asian longitude sector. GPS RO data shows that the EFI event over Southeast Asia coincided with the suppression of peak-season EPBs in the African and Pacific longitude sectors. Ionosonde data shows the presence of a strong pre-reversal enhancement (PRE) in the upward plasma drift over Southeast Asia prior to the detection of EFIs. Further, it is reported that this PRE was significantly stronger than on any other day of July 2014. An analysis of the geophysical conditions during this event reveals that this enhanced PRE was not caused by disturbed geomagnetic activity. Therefore, it is hypothesized that forcing from lower altitudes, perhaps tidal/planetary waves, was the potential cause of this strong PRE, and the subsequent EPB/EFI activity, on this day over the Southeast Asian sector.

Collaboration


Dive into the Robert Norman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ronald G. Caton

Air Force Research Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge