Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert P. St.Onge is active.

Publication


Featured researches published by Robert P. St.Onge.


Science | 2010

The Genetic Landscape of a Cell

Michael Costanzo; Anastasia Baryshnikova; Jeremy Bellay; Yungil Kim; Eric D. Spear; Carolyn S. Sevier; Huiming Ding; Judice L. Y. Koh; Kiana Toufighi; Jeany Prinz; Robert P. St.Onge; Benjamin VanderSluis; Taras Makhnevych; Franco J. Vizeacoumar; Solmaz Alizadeh; Sondra Bahr; Renee L. Brost; Yiqun Chen; Murat Cokol; Raamesh Deshpande; Zhijian Li; Zhen Yuan Lin; Wendy Liang; Michaela Marback; Jadine Paw; Bryan Joseph San Luis; Ermira Shuteriqi; Amy Hin Yan Tong; Nydia Van Dyk; Iain M. Wallace

Making Connections Genetic interaction profiles highlight cross-connections between bioprocesses, providing a global view of cellular pleiotropy, and enable the prediction of genetic network hubs. Costanzo et al. (p. 425) performed a pairwise fitness screen covering approximately one-third of all potential genetic interactions in yeast, examining 5.4 million gene-gene pairs and generating quantitative profiles for ∼75% of the genome. Of the pairwise interactions tested, about 3% of the genes investigated interact under the conditions tested. On the basis of these data, a reference map for the yeast genetic network was created. A genome-wide interaction map of yeast identifies genetic interactions, networks, and function. A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Science | 2008

The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes

Maureen E. Hillenmeyer; Eula Fung; Jan Wildenhain; Sarah E. Pierce; Shawn Hoon; William W. Lee; Mark R. Proctor; Robert P. St.Onge; Mike Tyers; Daphne Koller; Russ B. Altman; Ronald W. Davis; Corey Nislow; Guri Giaever

Genetics aims to understand the relation between genotype and phenotype. However, because complete deletion of most yeast genes (∼80%) has no obvious phenotypic consequence in rich medium, it is difficult to study their functions. To uncover phenotypes for this nonessential fraction of the genome, we performed 1144 chemical genomic assays on the yeast whole-genome heterozygous and homozygous deletion collections and quantified the growth fitness of each deletion strain in the presence of chemical or environmental stress conditions. We found that 97% of gene deletions exhibited a measurable growth phenotype, suggesting that nearly all genes are essential for optimal growth in at least one condition.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Defining genetic interaction

Ramamurthy Mani; Robert P. St.Onge; John L. Hartman; Guri Giaever; Frederick P. Roth

Sometimes mutations in two genes produce a phenotype that is surprising in light of each mutations individual effects. This phenomenon, which defines genetic interaction, can reveal functional relationships between genes and pathways. For example, double mutants with surprisingly slow growth define synergistic interactions that can identify compensatory pathways or protein complexes. Recent studies have used four mathematically distinct definitions of genetic interaction (here termed Product, Additive, Log, and Min). Whether this choice holds practical consequences has not been clear, because the definitions yield identical results under some conditions. Here, we show that the choice among alternative definitions can have profound consequences. Although 52% of known synergistic genetic interactions in Saccharomyces cerevisiae were inferred according to the Min definition, we find that both Product and Log definitions (shown here to be practically equivalent) are better than Min for identifying functional relationships. Additionally, we show that the Additive and Log definitions, each commonly used in population genetics, lead to differing conclusions related to the selective advantages of sexual reproduction.


Nature Genetics | 2007

Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions

Robert P. St.Onge; Ramamurthy Mani; Julia Oh; Mark R. Proctor; Eula Fung; Ronald W. Davis; Corey Nislow; Frederick P. Roth; Guri Giaever

Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination–derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.


Nucleic Acids Research | 2010

Highly-multiplexed barcode sequencing: an efficient method for parallel analysis of pooled samples

A. M. Smith; Lawrence E. Heisler; Robert P. St.Onge; Eveline Farias-Hesson; Iain M. Wallace; John Bodeau; Adam N. Harris; Kathleen Perry; Guri Giaever; Nader Pourmand; Corey Nislow

Next-generation sequencing has proven an extremely effective technology for molecular counting applications where the number of sequence reads provides a digital readout for RNA-seq, ChIP-seq, Tn-seq and other applications. The extremely large number of sequence reads that can be obtained per run permits the analysis of increasingly complex samples. For lower complexity samples, however, a point of diminishing returns is reached when the number of counts per sequence results in oversampling with no increase in data quality. A solution to making next-generation sequencing as efficient and affordable as possible involves assaying multiple samples in a single run. Here, we report the successful 96-plexing of complex pools of DNA barcoded yeast mutants and show that such ‘Bar-seq’ assessment of these samples is comparable with data provided by barcode microarrays, the current benchmark for this application. The cost reduction and increased throughput permitted by highly multiplexed sequencing will greatly expand the scope of chemogenomics assays and, equally importantly, the approach is suitable for other sequence counting applications that could benefit from massive parallelization.


Nature Chemical Biology | 2008

An integrated platform of genomic assays reveals small-molecule bioactivities

Shawn Hoon; A. M. Smith; Iain M. Wallace; Sundari Suresh; Molly Miranda; Eula Fung; Mark R. Proctor; Kevan M. Shokat; Chao Zhang; Ronald W. Davis; Guri Giaever; Robert P. St.Onge; Corey Nislow

Bioactive compounds are widely used to modulate protein function and can serve as important leads for drug development. Identifying the in vivo targets of these compounds remains a challenge. Using yeast, we integrated three genome-wide gene-dosage assays to measure the effect of small molecules in vivo. A single TAG microarray was used to resolve the fitness of strains derived from pools of (i) homozygous deletion mutants, (ii) heterozygous deletion mutants and (iii) genomic library transformants. We demonstrated, with eight diverse reference compounds, that integration of these three chemogenomic profiles improves the sensitivity and specificity of small-molecule target identification. We further dissected the mechanism of action of two protein phosphatase inhibitors and in the process developed a framework for the rational design of multidrug combinations to sensitize cells with specific genotypes more effectively. Finally, we applied this platform to 188 novel synthetic chemical compounds and identified both potential targets and structure-activity relationships.


PLOS Genetics | 2005

Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents

William W. Lee; Robert P. St.Onge; Mark R. Proctor; Patrick Flaherty; Michael I. Jordan; Adam P. Arkin; Ronald W. Davis; Corey Nislow; Guri Giaever

The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.


Science | 2014

Mapping the Cellular Response to Small Molecules Using Chemogenomic Fitness Signatures

Anna Y. Lee; Robert P. St.Onge; Michael J. Proctor; Iain M. Wallace; Aaron H. Nile; Paul A. Spagnuolo; Yulia Jitkova; Marcela Gronda; Yan Wu; Moshe K. Kim; Kahlin Cheung-Ong; Nikko P. Torres; Eric D. Spear; Mitchell K.L. Han; Ulrich Schlecht; Sundari Suresh; Geoffrey Duby; Lawrence E. Heisler; Anuradha Surendra; Eula Fung; Malene L. Urbanus; Marinella Gebbia; Elena Lissina; Molly Miranda; Jennifer Chiang; Ana Aparicio; Mahel Zeghouf; Ronald W. Davis; Jacqueline Cherfils; Marc Boutry

Yeasty HIPHOP In order to identify how chemical compounds target genes and affect the physiology of the cell, tests of the perturbations that occur when treated with a range of pharmacological chemicals are required. By examining the haploinsufficiency profiling (HIP) and homozygous profiling (HOP) chemogenomic platforms, Lee et al. (p. 208) analyzed the response of yeast to thousands of different small molecules, with genetic, proteomic, and bioinformatic analyses. Over 300 compounds were identified that targeted 121 genes within 45 cellular response signature networks. These networks were used to extrapolate the likely effects of related chemicals, their impact upon genetic pathways, and to identify putative gene functions. Guilt by association helps identify the chemogenomic signatures of compounds targeting yeast genes. Genome-wide characterization of the in vivo cellular response to perturbation is fundamental to understanding how cells survive stress. Identifying the proteins and pathways perturbed by small molecules affects biology and medicine by revealing the mechanisms of drug action. We used a yeast chemogenomics platform that quantifies the requirement for each gene for resistance to a compound in vivo to profile 3250 small molecules in a systematic and unbiased manner. We identified 317 compounds that specifically perturb the function of 121 genes and characterized the mechanism of specific compounds. Global analysis revealed that the cellular response to small molecules is limited and described by a network of 45 major chemogenomic signatures. Our results provide a resource for the discovery of functional interactions among genes, chemicals, and biological processes.


Trends in Pharmacological Sciences | 2008

Yeast chemical genomics and drug discovery: an update

Shawn Hoon; Robert P. St.Onge; Guri Giaever; Corey Nislow

The Saccharomyces cerevisiae sequencing project (the first eukaryotic genome decoded) was completed in 1995 and, subsequently, the first version of the yeast knockout collection was made available in 2002. Since then, many diverse studies have applied these resources to understand drug mechanism of action and to identify novel drug targets and target pathways. In this update of an earlier review, we present a snapshot of the current state of chemical genomic approaches in yeast, propose a set of integrated chemical genomic assays to move the field forward and consider its near-term future.


Proceedings of the National Academy of Sciences of the United States of America | 2011

A yeast-based assay identifies drugs active against human mitochondrial disorders

Elodie Couplan; Raeka S. Aiyar; Roza Kucharczyk; Anna Magdalena Kabala; Nahia Ezkurdia; Julien Gagneur; Robert P. St.Onge; Bénédicte Salin; Flavie Soubigou; Marie Le Cann; Lars M. Steinmetz; Jean-Paul di Rago; Marc Blondel

Due to the lack of relevant animal models, development of effective treatments for human mitochondrial diseases has been limited. Here we establish a rapid, yeast-based assay to screen for drugs active against human inherited mitochondrial diseases affecting ATP synthase, in particular NARP (neuropathy, ataxia, and retinitis pigmentosa) syndrome. This method is based on the conservation of mitochondrial function from yeast to human, on the unique ability of yeast to survive without production of ATP by oxidative phosphorylation, and on the amenability of the yeast mitochondrial genome to site-directed mutagenesis. Our method identifies chlorhexidine by screening a chemical library and oleate through a candidate approach. We show that these molecules rescue a number of phenotypes resulting from mutations affecting ATP synthase in yeast. These compounds are also active on human cybrid cells derived from NARP patients. These results validate our method as an effective high-throughput screening approach to identify drugs active in the treatment of human ATP synthase disorders and suggest that this type of method could be applied to other mitochondrial diseases.

Collaboration


Dive into the Robert P. St.Onge's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guri Giaever

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Corey Nislow

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark R. Proctor

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge