Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Pejchal is active.

Publication


Featured researches published by Robert Pejchal.


Nature | 2011

Broad neutralization coverage of HIV by multiple highly potent antibodies

Laura M. Walker; Michael Huber; Katie J. Doores; Emilia Falkowska; Robert Pejchal; Jean-Philippe Julien; Sheng-Kai Wang; Alejandra Ramos; Po-Ying Chan-Hui; Matthew Moyle; Jennifer L. Mitcham; Phillip W. Hammond; Ole A. Olsen; Pham Phung; Steven P. Fling; Chi-Huey Wong; Sanjay Phogat; Terri Wrin; Melissa Simek; Protocol G. Principal Investigators; Wayne C. Koff; Ian A. Wilson; Dennis R. Burton; Pascal Poignard

Broadly neutralizing antibodies against highly variable viral pathogens are much sought after to treat or protect against global circulating viruses. Here we probed the neutralizing antibody repertoires of four human immunodeficiency virus (HIV)-infected donors with remarkably broad and potent neutralizing responses and rescued 17 new monoclonal antibodies that neutralize broadly across clades. Many of the new monoclonal antibodies are almost tenfold more potent than the recently described PG9, PG16 and VRC01 broadly neutralizing monoclonal antibodies and 100-fold more potent than the original prototype HIV broadly neutralizing monoclonal antibodies. The monoclonal antibodies largely recapitulate the neutralization breadth found in the corresponding donor serum and many recognize novel epitopes on envelope (Env) glycoprotein gp120, illuminating new targets for vaccine design. Analysis of neutralization by the full complement of anti-HIV broadly neutralizing monoclonal antibodies now available reveals that certain combinations of antibodies should offer markedly more favourable coverage of the enormous diversity of global circulating viruses than others and these combinations might be sought in active or passive immunization regimes. Overall, the isolation of multiple HIV broadly neutralizing monoclonal antibodies from several donors that, in aggregate, provide broad coverage at low concentrations is a highly positive indicator for the eventual design of an effective antibody-based HIV vaccine.


Nature | 2011

Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9

Jason S. McLellan; Marie Pancera; Chris Carrico; Jason Gorman; Jean-Philippe Julien; Reza Khayat; Robert K. Louder; Robert Pejchal; Mallika Sastry; Kaifan Dai; Sijy O’Dell; Nikita Patel; Syed Shahzad-ul-Hussan; Yongping Yang; Baoshan Zhang; Tongqing Zhou; Jiang Zhu; Jeffrey C. Boyington; Gwo-Yu Chuang; Devan Diwanji; Ivelin S. Georgiev; Young Do Kwon; Doyung Lee; Mark K. Louder; Stephanie Moquin; Stephen D. Schmidt; Zhi-Yong Yang; Mattia Bonsignori; John A. Crump; Saidi Kapiga

Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded β-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which—with PG9—involves a site of vulnerability comprising just two glycans and a strand.


Science | 2011

A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield.

Robert Pejchal; Katie J. Doores; Laura M. Walker; Reza Khayat; Po-Ssu Huang; Sheng-Kai Wang; Robyn L. Stanfield; Jean-Philippe Julien; Alejandra Ramos; Matthew Crispin; Rafael S. Depetris; Umesh Katpally; Andre J. Marozsan; Albert Cupo; Sebastien Maloveste; Yan Liu; Ryan McBride; Yukishige Ito; Rogier W. Sanders; Cassandra Ogohara; James C. Paulson; Ten Feizi; Christopher N. Scanlan; Chi-Huey Wong; John P. Moore; William C. Olson; Andrew B. Ward; Pascal Poignard; William R. Schief; Dennis R. Burton

An HIV antibody achieves potency and breadth by binding simultaneously to two conserved glycans on the viral envelope protein. The HIV envelope (Env) protein gp120 is protected from antibody recognition by a dense glycan shield. However, several of the recently identified PGT broadly neutralizing antibodies appear to interact directly with the HIV glycan coat. Crystal structures of antigen-binding fragments (Fabs) PGT 127 and 128 with Man9 at 1.65 and 1.29 angstrom resolution, respectively, and glycan binding data delineate a specific high mannose-binding site. Fab PGT 128 complexed with a fully glycosylated gp120 outer domain at 3.25 angstroms reveals that the antibody penetrates the glycan shield and recognizes two conserved glycans as well as a short β-strand segment of the gp120 V3 loop, accounting for its high binding affinity and broad specificify. Furthermore, our data suggest that the high neutralization potency of PGT 127 and 128 immunoglobulin Gs may be mediated by cross-linking Env trimers on the viral surface.


PLOS Pathogens | 2013

Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans.

Jean-Philippe Julien; Devin Sok; Reza Khayat; Jeong Hyun Lee; Katherine Doores; Laura M. Walker; Alejandra Ramos; Devan Diwanji; Robert Pejchal; Albert Cupo; Umesh Katpally; Rafael S. Depetris; Robyn L. Stanfield; Ryan McBride; Andre J. Marozsan; James C. Paulson; Rogier W. Sanders; John P. Moore; Dennis R. Burton; Pascal Poignard; Andrew B. Ward; Ian A. Wilson

New broad and potent neutralizing HIV-1 antibodies have recently been described that are largely dependent on the gp120 N332 glycan for Env recognition. Members of the PGT121 family of antibodies, isolated from an African donor, neutralize ∼70% of circulating isolates with a median IC50 less than 0.05 µg ml−1. Here, we show that three family members, PGT121, PGT122 and PGT123, have very similar crystal structures. A long 24-residue HCDR3 divides the antibody binding site into two functional surfaces, consisting of an open face, formed by the heavy chain CDRs, and an elongated face, formed by LCDR1, LCDR3 and the tip of the HCDR3. Alanine scanning mutagenesis of the antibody paratope reveals a crucial role in neutralization for residues on the elongated face, whereas the open face, which accommodates a complex biantennary glycan in the PGT121 structure, appears to play a more secondary role. Negative-stain EM reconstructions of an engineered recombinant Env gp140 trimer (SOSIP.664) reveal that PGT122 interacts with the gp120 outer domain at a more vertical angle with respect to the top surface of the spike than the previously characterized antibody PGT128, which is also dependent on the N332 glycan. We then used ITC and FACS to demonstrate that the PGT121 antibodies inhibit CD4 binding to gp120 despite the epitope being distal from the CD4 binding site. Together, these structural, functional and biophysical results suggest that the PGT121 antibodies may interfere with Env receptor engagement by an allosteric mechanism in which key structural elements, such as the V3 base, the N332 oligomannose glycan and surrounding glycans, including a putative V1/V2 complex biantennary glycan, are conformationally constrained.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1

Robert Pejchal; Laura M. Walker; Robyn L. Stanfield; Sanjay Phogat; Wayne C. Koff; Pascal Poignard; Dennis R. Burton; Ian A. Wilson

Development of an effective vaccine against HIV-1 will likely require elicitation of broad and potent neutralizing antibodies against the trimeric surface envelope glycoprotein (Env). Monoclonal antibodies (mAbs) PG9 and PG16 neutralize ~80% of HIV-1 isolates across all clades with extraordinary potency and target novel epitopes preferentially expressed on Env trimers. As these neutralization properties are ideal for a vaccine-elicited antibody response to HIV-1, their structural basis was investigated. The crystal structure of the antigen-binding fragment (Fab) of PG16 at 2.5 Å resolution revealed its unusually long, 28-residue, complementarity determining region (CDR) H3 forms a unique, stable subdomain that towers above the antibody surface. A 7-residue “specificity loop” on the “hammerhead” subdomain was identified that, when transplanted from PG16 to PG9 and vice versa, accounted for differences in the fine specificity and neutralization of these two mAbs. The PG16 electron density maps also revealed that a CDR H3 tyrosine was sulfated, which was confirmed for both PG9 (doubly) and PG16 (singly) by mass spectral analysis. We further showed that tyrosine sulfation plays a role in binding and neutralization. An N-linked glycan modification is observed in the variable light chain, but not required for antigen recognition. Further, the crystal structure of the PG9 light chain at 3.0 Å facilitated homology modeling to support the presence of these unusual features in PG9. Thus, PG9 and PG16 use unique structural features to mediate potent neutralization of HIV-1 that may be of utility in antibody engineering and for high-affinity recognition of a variety of therapeutic targets.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures

Audray K. Harris; Mario J. Borgnia; Dan Shi; Alberto Bartesaghi; Haifeng He; Robert Pejchal; Yun Kenneth Kang; Rafael S. Depetris; Andre J. Marozsan; Rogier W. Sanders; Per Johan Klasse; Jacqueline L. S. Milne; Ian A. Wilson; William C. Olson; John P. Moore; Sriram Subramaniam

The initial step in HIV-1 infection occurs with the binding of cell surface CD4 to trimeric HIV-1 envelope glycoproteins (Env), a heterodimer of a transmembrane glycoprotein (gp41) and a surface glycoprotein (gp120). The design of soluble versions of trimeric Env that display structural and functional properties similar to those observed on intact viruses is highly desirable from the viewpoint of designing immunogens that could be effective as vaccines against HIV/AIDS. Using cryoelectron tomography combined with subvolume averaging, we have analyzed the structure of SOSIP gp140 trimers, which are cleaved, solubilized versions of the ectodomain of trimeric HIV-1 Env. We show that unliganded gp140 trimers adopt a quaternary arrangement similar to that displayed by native unliganded trimers on the surface of intact HIV-1 virions. When complexed with soluble CD4, Fab 17b, which binds to gp120 at its chemokine coreceptor binding site, or both soluble CD4 and 17b Fab, gp140 trimers display an open conformation in which there is an outward rotation and displacement of each gp120 protomer. We demonstrate that the molecular arrangements of gp120 trimers in the closed and open conformations of the soluble trimer are the same as those observed for the closed and open states, respectively, of trimeric gp120 on intact HIV-1 BaL virions, establishing that soluble gp140 trimers can be designed to mimic the quaternary structural transitions displayed by native trimeric Env.


Journal of Virology | 2009

A Conformational Switch in Human Immunodeficiency Virus gp41 Revealed by the Structures of Overlapping Epitopes Recognized by Neutralizing Antibodies

Robert Pejchal; Johannes S. Gach; Florence M. Brunel; Rosa M.F. Cardoso; Robyn L. Stanfield; Philip E. Dawson; Dennis R. Burton; Michael B. Zwick; Ian A. Wilson

ABSTRACT The membrane-proximal external region (MPER) of the human immunodeficiency virus (HIV) envelope glycoprotein (gp41) is critical for viral fusion and infectivity and is the target of three of the five known broadly neutralizing HIV type 1 (HIV-1) antibodies, 2F5, Z13, and 4E10. Here, we report the crystal structure of the Fab fragment of Z13e1, an affinity-enhanced variant of monoclonal antibody Z13, in complex with a 12-residue peptide corresponding to the core epitope (W670NWFDITN677) at 1.8-Å resolution. The bound peptide adopts an S-shaped conformation composed of two tandem, perpendicular helical turns. This conformation differs strikingly from the α-helical structure adopted by an overlapping MPER peptide bound to 4E10. Z13e1 binds to an elbow in the MPER at the membrane interface, making relatively few interactions with conserved aromatics (Trp672 and Phe673) that are critical for 4E10 recognition. The comparison of the Z13e1 and 4E10 epitope structures reveals a conformational switch such that neutralization can occur by the recognition of the different conformations and faces of the largely amphipathic MPER. The Z13e1 structure provides significant new insights into the dynamic nature of the MPER, which likely is critical for membrane fusion, and it has significant implications for mechanisms of HIV-1 neutralization by MPER antibodies and for the design of HIV-1 immunogens.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Rapid development of glycan-specific, broad, and potent anti–HIV-1 gp120 neutralizing antibodies in an R5 SIV/HIV chimeric virus infected macaque

Laura M. Walker; Devin Sok; Yoshiaki Nishimura; Olivia K. Donau; Reza Sadjadpour; Rajeev Gautam; Masashi Shingai; Robert Pejchal; Alejandra Ramos; Melissa Simek; Yu Geng; Ian A. Wilson; Pascal Poignard; Malcolm A. Martin; Dennis R. Burton

It is widely believed that the induction of a broadly neutralizing antibody (bNAb) response will be a critical component of a successful vaccine against HIV. A significant fraction of HIV-infected individuals mount bNAb responses, providing support for the notion that such responses could be elicited through vaccination. Infection of macaques with simian immunodeficiency virus (SIV) or SIV/HIV chimeric virus (SHIV) has been widely used to model aspects of HIV infection, but to date, only limited bNAb responses have been described. Here, we screened plasma from 14 R5-tropic SHIV-infected macaques for broadly neutralizing activity and identified a macaque with highly potent cross-clade plasma NAb response. Longitudinal studies showed that the development of broad and autologous NAb responses occurred coincidentally in this animal. Serum-mapping studies, using pseudovirus point mutants and antigen adsorption assays, indicated that the plasma bNAbs are specific for epitopes that include carbohydrates and are critically dependent on the glycan at position 332 of Env gp120. The results described herein provide insight into the development and evolution of a broad response, suggest that certain bNAb specificities may be more rapidly induced by immunization than others, and provide a potential model for the facile study of the development of bNAb responses.


PLOS Biology | 2004

Cobalamin-independent methionine synthase (MetE): a face-to-face double barrel that evolved by gene duplication

Robert Pejchal; Martha L. Ludwig

Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (βα)8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys)3Zn site in the related enzymes, MetH and betaine–homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E·Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.


Journal of Virology | 2013

Influences on Trimerization and Aggregation of Soluble, Cleaved HIV-1 SOSIP Envelope Glycoprotein

Per Johan Klasse; Rafael S. Depetris; Robert Pejchal; Jean-Philippe Julien; Reza Khayat; Jeong Hyun Lee; Andre J. Marozsan; Albert Cupo; Nicolette Cocco; Jacob Korzun; Anila Yasmeen; Andrew B. Ward; Ian A. Wilson; Rogier W. Sanders; John P. Moore

ABSTRACT We describe methods to improve the properties of soluble, cleaved gp140 trimers of the human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins (Env) for use in structural studies and as immunogens. In the absence of nonionic detergents, gp140 of the KNH1144 genotype, terminating at residue 681 in gp41 (SOSIP.681), has a tendency to form higher-order complexes or aggregates, which is particularly undesirable for structure-based research. We found that this aggregation in the absence of detergent does not involve the V1, V2, or V3 variable regions of gp120. Moreover, we observed that detergent forms micelles around the membrane-proximal external region (MPER) of the SOSIP.681 gp140 trimers, whereas deletion of most of the MPER residues by terminating the gp140 at residue 664 (SOSIP.664) prevented the aggregation that otherwise occurs in SOSIP.681 in the absence of detergent. Although the MPER can contribute to trimer formation, truncation of most of it only modestly reduced trimerization and lacked global adverse effects on antigenicity. Thus, the MPER deletion minimally influenced the kinetics of the binding of soluble CD4 and a CD4-binding site antibody to immobilized trimers, as detected by surface plasmon resonance. Furthermore, the MPER deletion did not alter the overall three-dimensional structure of the trimers, as viewed by negative-stain electron microscopy. Homogeneous and aggregate-free MPER-truncated SOSIP Env trimers are therefore useful for immunogenicity and structural studies.

Collaboration


Dive into the Robert Pejchal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Reza Khayat

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew B. Ward

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dennis R. Burton

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge