Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Pilarski is active.

Publication


Featured researches published by Robert Pilarski.


Journal of Medical Genetics | 2005

Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations

Butler Mg; Dasouki Mj; Xiao Ping Zhou; Zohreh Talebizadeh; Brown M; Takahashi Tn; Miles Jh; Wang Ch; Stratton R; Robert Pilarski; Charis Eng

The genetic aetiology of autism remains elusive. Occasionally, individuals with Cowden syndrome (a cancer syndrome) and other related hamartoma disorders such as Bannayan-Riley-Ruvalcaba syndrome, Proteus syndrome, and Proteus-like conditions, are characterised by germline PTEN mutations, and may have neurobehavioural features resembling autism as well as overgrowth and macrocephaly. Therefore, we undertook PTEN gene mutation analysis in 18 subjects mainly prospectively ascertained with autism spectrum disorder and macrocephaly. Of these 18 autistic subjects (13 males and five females; ages 3.1–18.4 years) with a head circumference range from 2.5 to 8.0 standard deviations above the mean, three males (17%) carried germline PTEN mutations. These three probands had previously undescribed PTEN mutations: H93R (exon 4), D252G (exon 7), and F241S (exon 7). They had the larger head circumference measurements amongst all our study subjects. The three residues altered in our patients were highly evolutionarily conserved. We suggest that PTEN gene testing be considered for patients with autistic behaviour and extreme macrocephaly. The gene findings may impact on recurrence risks as well as medical management for the patient.


Journal of Medical Genetics | 2004

Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome

Robert Pilarski; Charis Eng

PTEN hamartoma tumour syndrome Since consensus operational diagnostic criteria for Cowden syndrome (MIM 158350) were first established in 1995, our understanding of this complex disease—and the spectrum of disorders related to it by virtue of also having germline mutations in the PTEN tumour suppressor gene—has continued to evolve. This was reflected in a commentary1 in this journal in 2000 in which it was proposed that endometrial cancer and renal cell carcinoma be added to the operational diagnostic criteria for Cowden syndrome (table 1). This updated commentary is intended to provide a review of significant changes in our understanding of the growing group of disorders, which are known to be caused by germline mutations in PTEN on 10q23.3, and which have been termed the PTEN hamartoma tumour syndrome. View this table: Table 1 International Cowden Consortium operational criteria for the diagnosis of Cowden syndrome. Ver 2000 Cowden syndrome is a complex disorder with malignant and benign (hamartomatous) lesions affecting derivatives of all three germ cell layers. Major organs involved include the breast, thyroid, uterus, brain, and mucocutaneous tissues.2 It has been estimated to affect about 1 in 200 000 individuals,3,4 although this is probably an underestimate given the difficulty in diagnosis presented by this highly variable disease and the fact that many component features in and of themselves can occur in the general population. Penetrance is related to age, with most patients presenting by their late twenties with at least the mucocutaneous lesions of this disorder, which are reportedly seen in 99% of affected individuals. The lifetime risk for breast cancer in Cowden syndrome is estimated to be 25–50%, with an average age of diagnosis between 38 and 46 years old.2,5 The risk for thyroid cancer (typically follicular, but occasionally papillary) is approximately 10%, while the risk for endometrial cancer, …


Journal of Medical Genetics | 2011

Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers.

Mohamed H. Abdel-Rahman; Robert Pilarski; Colleen M. Cebulla; James B. Massengill; Benjamin N. Christopher; Getachew Boru; Peter Hovland; Frederick H. Davidorf

Objective To investigate the potential contribution of germline sequence alterations in the BAP1 gene in uveal melanoma (UM) patients with possible predisposition to hereditary cancer. Design A total of 53 unrelated UM patients with high risk for hereditary cancer and five additional family members of one proband were studied. Mutational screening was carried out by direct sequencing. Results Of the 53 UM patients studied, a single patient was identified with a germline BAP1 truncating mutation, c. 799 C→T (p.Q267X), which segregated in several family members and was associated with UM and other cancers. Biallelic inactivation of BAP1 and decreased BAP1 expression were identified in the UM, lung adenocarcinoma and meningioma tumours from three family members with this germline BAP1 mutation. Germline BAP1 variants of uncertain significance, likely non-pathogenic, were also identified in two additional UM patients. Conclusion This study reports a novel hereditary cancer syndrome caused by a germline BAP1 mutation that predisposes patients to UM, lung carcinoma, meningioma, and possibly other cancers. The results indicate that BAP1 is the candidate gene in only a small subset of hereditary UM, suggesting the contribution of other candidate genes.


American Journal of Human Genetics | 2001

Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of cowden and bannayan-riley-ruvalcaba syndromes

Xiao-Ping Zhou; Kelly Woodford-Richens; Rainer Lehtonen; Keisuke Kurose; Micheala A. Aldred; Heather Hampel; Virpi Launonen; Sanno Virta; Robert Pilarski; Reijo Salovaara; Walter F. Bodmer; Beth A. Conrad; Malcolm G. Dunlop; Shirley Hodgson; Takeo Iwama; Heikki Järvinen; Ilmo Kellokumpu; Jin Cheon Kim; Barbara A. Leggett; David Markie; Jukka-Pekka Mecklin; Kay Neale; Robin K. S. Phillips; Juan Piris; Paul Rozen; Richard S. Houlston; Lauri A. Aaltonen; Ian Tomlinson; Charis Eng

Juvenile polyposis syndrome (JPS) is an inherited hamartomatous-polyposis syndrome with a risk for colon cancer. JPS is a clinical diagnosis by exclusion, and, before susceptibility genes were identified, JPS could easily be confused with other inherited hamartoma syndromes, such as Bannayan-Riley-Ruvalcaba syndrome (BRRS) and Cowden syndrome (CS). Germline mutations of MADH4 (SMAD4) have been described in a variable number of probands with JPS. A series of familial and isolated European probands without MADH4 mutations were analyzed for germline mutations in BMPR1A, a member of the transforming growth-factor beta-receptor superfamily, upstream from the SMAD pathway. Overall, 10 (38%) probands were found to have germline BMPR1A mutations, 8 of which resulted in truncated receptors and 2 of which resulted in missense alterations (C124R and C376Y). Almost all available component tumors from mutation-positive cases showed loss of heterozygosity (LOH) in the BMPR1A region, whereas those from mutation-negative cases did not. One proband with CS/CS-like phenotype was also found to have a germline BMPR1A missense mutation (A338D). Thus, germline BMPR1A mutations cause a significant proportion of cases of JPS and might define a small subset of cases of CS/BRRS with specific colonic phenotype.


American Journal of Human Genetics | 2003

Germline PTEN Promoter Mutations and Deletions in Cowden/Bannayan-Riley-Ruvalcaba Syndrome Result in Aberrant PTEN Protein and Dysregulation of the Phosphoinositol-3-Kinase/Akt Pathway

Xiao Ping Zhou; Kristin A. Waite; Robert Pilarski; Heather Hampel; Magali Fernandez; Cindy Bos; Majed Dasouki; Gerald L. Feldman; Lois A. Greenberg; Jennifer Ivanovich; Ellen T. Matloff; Annette R. Patterson; Mary Ella Pierpont; Donna Russo; Najah T. Nassif; Charis Eng

Germline intragenic mutations in PTEN are associated with 80% of patients with Cowden syndrome (CS) and 60% of patients with Bannayan-Riley-Ruvalcaba syndrome (BRRS). The underlying genetic causes remain to be determined in a considerable proportion of classic CS and BRRS without a polymerase chain reaction (PCR)-detectable PTEN mutation. We hypothesized that gross gene deletions and mutations in the PTEN promoter might alternatively account for a subset of apparently mutation-negative patients with CS and BRRS. Using real time and multiplex PCR techniques, we identified three germline hemizygous PTEN deletions in 122 apparently mutation-negative patients with classic CS (N=95) or BRRS (N=27). Fine mapping suggested that one deletion encompassed the whole gene and the other two included exon 1 and encompassed exons 1-5 of PTEN, respectively. Two patients with the deletion were diagnosed with BRRS, and one patient with the deletion was diagnosed with BRRS/CS overlap (features of both). Thus 3 (11%) of 27 patients with BRRS or BRRS/CS-overlap had PTEN deletions. Analysis of the PTEN promoter revealed nine cases (7.4%) harboring heterozygous germline mutations. All nine had classic CS, representing almost 10% of all subjects with CS. Eight had breast cancers and/or benign breast tumors but, otherwise, oligo-organ involvement. PTEN protein analysis, from one deletion-positive and five PTEN-promoter-mutation-positive samples, revealed a 50% reduction in protein and multiple bands of immunoreactive protein, respectively. In contrast, control samples showed only the expected band. Further, an elevated level of phosphorylated Akt was detected in the five promoter-mutation-positive samples, compared with controls, indicating an absence of or marked reduction in functional PTEN. These data suggest that patients with BRRS and CS without PCR-detected intragenic PTEN mutations be offered clinical deletion analysis and promoter-mutation analysis, respectively.


Journal of Clinical Oncology | 2015

Inherited Mutations in 17 Breast Cancer Susceptibility Genes Among a Large Triple-Negative Breast Cancer Cohort Unselected for Family History of Breast Cancer

Fergus J. Couch; Steven N. Hart; Priyanka Sharma; Amanda Ewart Toland; Xianshu Wang; Penelope Miron; Janet E. Olson; Andrew K. Godwin; V. Shane Pankratz; Curtis Olswold; Seth W. Slettedahl; Emily Hallberg; Lucia Guidugli; Jaime Davila; Matthias W. Beckmann; Wolfgang Janni; Brigitte Rack; Arif B. Ekici; Dennis J. Slamon; Irene Konstantopoulou; Florentia Fostira; Athanassios Vratimos; George Fountzilas; Liisa M. Pelttari; William Tapper; Lorraine Durcan; Simon S. Cross; Robert Pilarski; Charles L. Shapiro; Jennifer R. Klemp

PURPOSE Recent advances in DNA sequencing have led to the development of breast cancer susceptibility gene panels for germline genetic testing of patients. We assessed the frequency of mutations in 17 predisposition genes, including BRCA1 and BRCA2, in a large cohort of patients with triple-negative breast cancer (TNBC) unselected for family history of breast or ovarian cancer to determine the utility of germline genetic testing for those with TNBC. PATIENTS AND METHODS Patients with TNBC (N = 1,824) unselected for family history of breast or ovarian cancer were recruited through 12 studies, and germline DNA was sequenced to identify mutations. RESULTS Deleterious mutations were identified in 14.6% of all patients. Of these, 11.2% had mutations in the BRCA1 (8.5%) and BRCA2 (2.7%) genes. Deleterious mutations in 15 other predisposition genes were detected in 3.7% of patients, with the majority observed in genes involved in homologous recombination, including PALB2 (1.2%) and BARD1, RAD51D, RAD51C, and BRIP1 (0.3% to 0.5%). Patients with TNBC with mutations were diagnosed at an earlier age (P < .001) and had higher-grade tumors (P = .01) than those without mutations. CONCLUSION Deleterious mutations in predisposition genes are present at high frequency in patients with TNBC unselected for family history of cancer. Mutation prevalence estimates suggest that patients with TNBC, regardless of age at diagnosis or family history of cancer, should be considered for germline genetic testing of BRCA1 and BRCA2. Although mutations in other predisposition genes are observed among patients with TNBC, better cancer risk estimates are needed before these mutations are used for clinical risk assessment in relatives.


Journal of Genetic Counseling | 2009

Cowden Syndrome: A Critical Review of the Clinical Literature

Robert Pilarski

Cowden syndrome (CS) is a multi-system disease involving hamartomatous overgrowth of tissues of all three embryonic origins and increased risks for thyroid, breast and possibly other cancers. Benign breast, thyroid, uterine and skin lesions are also common. Approximately 80% of patients with CS have an identifiable germline mutation in the PTEN gene. The majority of the existing data on the frequencies of component clinical features have been obtained from compilations of case reports in the literature, many of which predate the establishment in 1996 of consensus diagnostic criteria. Many of these reports also suffer from ascertainment bias which emphasized the dermatologic features of the disease. This paper presents an overview of Cowden syndrome focusing on a critical evaluation of the major literature on the component cancers, benign features, and molecular findings in CS, noting the limitations of the published data.


Journal of the National Cancer Institute | 2013

Cowden Syndrome and the PTEN Hamartoma Tumor Syndrome: Systematic Review and Revised Diagnostic Criteria

Robert Pilarski; Randall W. Burt; Wendy Kohlman; Lana Pho; Kristen M. Shannon; Elizabeth M. Swisher

BACKGROUND PTEN hamartoma tumor syndrome (PHTS) refers to a spectrum of disorders caused by mutations in the phosphatase and tensin homolog (PTEN) gene. Diagnostic criteria for Cowden syndrome, the principal PTEN-related disorder, were first established in 1996 before the identification of the PTEN gene and the ability to molecularly confirm a clinical diagnosis. These consortium criteria were based on clinical experience and case reports in the existing literature, with their inherent selection biases. Although it was initially reported that approximately 80% of patients with Cowden syndrome had an identifiable germline PTEN mutation, more recent work has shown these diagnostic criteria to be far less specific. In addition, increasing evidence has documented the association of a broader spectrum of clinical features with PTEN mutations. Our goal was to develop revised, evidence-based diagnostic criteria and to include features of the broader spectrum of PTEN-related clinical syndromes. METHODS We performed a systematic search and review of the medical literature related to clinical features reported in individuals with a PTEN mutation and/or a related clinical diagnosis. RESULTS We found no sufficient evidence to support inclusion of benign breast disease, uterine fibroids, or genitourinary malformations as diagnostic criteria. There was evidence to include autism spectrum disorders, colon cancer, esophageal glycogenic acanthosis, penile macules, renal cell carcinoma, testicular lipomatosis, and vascular anomalies. CONCLUSIONS We propose revised, evidence-based criteria covering the spectrum of PTEN-related clinical disorders. Additional research on clinical features associated with PTEN mutations is warranted.


Journal of Medical Genetics | 2011

Predicting PTEN mutations: an evaluation of Cowden syndrome and Bannayan–Riley–Ruvalcaba syndrome clinical features

Robert Pilarski; Julie A. Stephens; Ryan Noss; James L. Fisher; Thomas W. Prior

Background Cowden syndrome (CS) is associated with benign hamartomatous lesions and risks for thyroid, breast and endometrial cancers. Bannayan–Riley–Ruvalcaba syndrome is an allelic disorder characterised by macrocephaly, intestinal polyps, lipomas, and pigmented penile macules. Diagnostic criteria for CS are based on the presence of a range of clinical features. However, prior data on the component clinical features have been based primarily on compilations of cases reported before development of consensus diagnostic criteria. Objective This study sought to determine the clinical features most predictive of a mutation in the largest single cohort of patients with clinical testing for PTEN mutations reported to date. Methods Molecular and clinical data were reviewed on 802 patients referred for PTEN analysis by a single laboratory. Results Deleterious mutations were found in 172 (21.4%) subjects. Among mutation carriers significant differences from previous reports were found for the frequencies of several clinical features, including macrocephaly, uterine fibroids, benign breast disease, and endometrial cancer. Logistic regression analyses indicated that female mutation carriers were best identified by the presence of macrocephaly, endometrial cancer, trichilemmomas, papillomatous papules, breast cancer, benign thyroid disease, and benign gastrointestinal (GI) lesions. For males, the most discriminating features were macrocephaly, lipomas, papillomatous papules, penile freckling, benign GI lesions, and benign thyroid disease. Age related differences were also identified. Conclusion The mutation frequency in patients meeting CS diagnostic criteria (34%) was significantly lower than previously reported, suggesting a need for reevaluation of these criteria. A mutation prediction model has been developed which can help identify patients appropriate for PTEN testing in clinical practice.


Genes, Chromosomes and Cancer | 2014

Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases

Robert Pilarski; Colleen M. Cebulla; James B. Massengill; Karan Rai; Thereasa A. Rich; Louise C. Strong; Barbara McGillivray; Mary Jill Asrat; Frederick H. Davidorf; Mohamed H. Abdel-Rahman

The clinical phenotype of BAP1 hereditary cancer predisposition syndrome (MIM 614327) includes uveal melanoma (UM), cutaneous melanoma (CM), renal cell carcinoma (RCC), and mesothelioma. However, the frequency of the syndrome in patients with UM and the association with other cancers are still not clear. In this study, we screened 46 previously untested, unrelated UM patients with high risk for hereditary cancer for germline mutation in BAP1. We also studied four additional patients with a personal or family history suggestive of BAP1 hereditary cancer syndrome. We identified three patients with germline pathogenic mutations (c.2050 C>T, pGln684*; c.1182C>G, p.Tyr394*, and c.1882_1885delTCAC, p. Ser628Profs*8) in BAP1. Two of these three patients presented with UM and the third with a metastatic adenocarcinoma likely from a hepatic cholangiocarcinoma. Reported family histories included UM, mesothelioma, RCC, CM, and several other internal malignancies. The results of this study confirm the association between germline BAP1 mutation and predisposition to UM, mesothelioma, CM and RCC. However, other cancers, such as cholangiocarcinoma and breast carcinoma may be part of the phenotype of this hereditary cancer predisposition syndrome. In addition, the results support the existence of other candidate genes in addition to BAP1 contributing to hereditary predisposition to UM.

Collaboration


Dive into the Robert Pilarski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charis Eng

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karan Rai

Ohio State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles L. Shapiro

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge