Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Ralston is active.

Publication


Featured researches published by Robert Ralston.


Hepatology | 2009

Characterization of resistance to the protease inhibitor boceprevir in hepatitis C virus–infected patients

S. Susser; Christoph Welsch; Yalan Wang; Markus Zettler; Francisco S. Domingues; Ursula Karey; Eric Hughes; Robert Ralston; Xiao Tong; Eva Herrmann; Stefan Zeuzem; Christoph Sarrazin

Boceprevir is a hepatitis C virus (HCV) nonstructural protein (NS) 3/4A protease inhibitor that is currently being evaluated in combination with peginterferon alfa‐2b and ribavirin in phase 3 studies. The clinical resistance profile of boceprevir is not characterized in detail so far. The NS3 protease domain of viral RNA was cloned from HCV genotype 1–infected patients (n = 22). A mean number of 47 clones were sequenced before, at the end, and after treatment with 400 mg boceprevir twice or three times daily for 14 days for genotypic, phenotypic, and viral fitness analysis. At the end of treatment, a wild‐type an NS3 protease sequence was observed with a mean frequency of 85.9%. In the remaining isolates, five previously observed resistance mutations (V36M/A, T54A/S, R155K/T, A156S, V170A) and one mutation (V55A) with unknown resistance to boceprevir were detected either alone or in combination. Phenotypic analysis in the HCV replicon assay showed low (V36G, T54S, R155L; 3.8‐ to 5.5‐fold 50% inhibitory concentration [IC50]), medium (V55A, R155K, V170A, T54A, A156S; 6.8‐ to 17.7‐fold IC50) and high level (A156T; >120‐fold IC50) resistance to boceprevir. The overall frequency of resistant mutations and the level of resistance increased with greater declines in mean maximum HCV RNA levels. Two weeks after the end of treatment, the frequency of resistant variants declined and the number of wild‐type isolates increased to 95.5%. With the exception of V36 and V170 variants all resistant mutations declined by more than 50%. Mathematical modeling revealed impaired replicative fitness for all single mutations, whereas for combined mutations a relative increase of replication efficiency was suggested. Conclusion: During boceprevir monotherapy, resistance mutations at six positions within the NS3 protease were detected by way of clonal sequence analysis. All mutations are associated with reduced replicative fitness estimated by mathematical modeling and show cross‐resistance to telaprevir. (HEPATOLOGY 2009.)


Antiviral Research | 2008

Characterization of resistance mutations against HCV ketoamide protease inhibitors

Xiao Tong; Stephane L. Bogen; Robert Chase; Viyyoor M. Girijavallabhan; Zhuyan Guo; F. George Njoroge; Andrew Prongay; Anil K. Saksena; Angela Skelton; Ellen Xia; Robert Ralston

An issue of clinical importance in the development of new antivirals for HCV is emergence of resistance. Several resistance loci to ketoamide inhibitors of the NS3/4A protease have been identified (residues V36, T54, R155, A156, and V170) by replicon and clinical studies. Using SCH 567312, a more potent protease inhibitor derived from SCH 503034 (boceprevir) series, we identified two new positions (Q41 and F43) that confer resistance to the ketoamide class. The catalytic efficiency of protease enzymes was not affected by most resistance mutations, whereas replicon fitness varied with specific mutations. SCH 503034 and another ketoamide inhibitor, VX-950 (telaprevir), showed moderate losses of activity against most resistance mutations (< or =10-fold); the highest resistance level was conferred by mutations at A156 locus. Although SCH 503034 and VX-950 bind similarly to the active site, differences in resistance level were observed with specific mutations. Changes at V36 and R155 had more severe impact on VX-950, whereas mutations at Q41, F43 and V170 conferred higher resistance to SCH 503034. Structural analysis of resistance mutations on inhibitor binding is discussed.


Virology | 2008

Mapping resistance to the CCR5 co-receptor antagonist vicriviroc using heterologous chimeric HIV-1 envelope genes reveals key determinants in the C2-V5 domain of gp120.

Robert A. Ogert; Lisa Wojcik; Catherine Buontempo; Lei Ba; Peter Buontempo; Robert Ralston; Julie M. Strizki; John A. Howe

Several small molecule drugs that bind to the host CCR5 co-receptor and prevent viral entry have been developed for the treatment of HIV-1 infection. The innate variability found in HIV-1 envelope and the complex viral/cellular interactions during entry makes defining resistance to these inhibitors challenging. Here we found that mapping determinants in the gp160 gene from a primary isolate RU570-VCV(res), selected in culture for resistance to the CCR5 entry inhibitor vicriviroc, was complicated by inactivity of the cloned envelope gene in pseudovirus assays. We therefore recombined the envelope from RU570-VCV(res) into a highly active and susceptible ADA gp160 backbone. The chimeric envelopes generated robust signals in the pseudovirus assay and a 200 amino acid fragment, encompassing a C2-V5 region of the RU570-VCV(res) envelope, was required to confer resistance in both the single-cycle assay and in replicating virus. In contrast, a chimeric envelope that contained only the V3-loop region from this resistant virus was completely susceptible suggesting that the V3-loop changes acquired are context dependent.


Journal of Virology | 2004

Postentry Neutralization of Adenovirus Type 5 by an Antihexon Antibody

Robin Varghese; Yeshi Mikyas; Phoebe L. Stewart; Robert Ralston

ABSTRACT Antibodies against hexon, the major coat protein of adenovirus (Ad), are an important component of the neutralizing activity in serum from naturally infected humans and experimentally infected animals. The mechanisms by which antihexon antibodies neutralize the virus have not been defined. As a model system, murine monoclonal antibodies raised against Ad type 5 (Ad5) were screened for antihexon binding and neutralization activity; one monoclonal antibody, designated 9C12, was selected for further characterization. The minimum ratio of 9C12 to Ad5 required for neutralization was 240 antibody molecules per virus particle, or 1 antibody per hexon trimer. Analysis of antibody-virus complexes by dynamic light scattering and negative-stain electron microscopy (EM) showed that the virus particles were coated with electron-dense material but not aggregated at neutralizing ratios. Cryo-EM image reconstruction of the antibody-virus complex showed that the surface of the virus particle was covered by a meshwork of 9C12 antibody density, consistent with bivalent binding at multiple sites. Confocal analysis revealed that viral attachment, cell entry, and intracellular transport to the nuclear periphery still occur in the presence of neutralizing levels of 9C12. A model is presented for neutralization of Ad by an antihexon antibody in which the hexon capsid is cross-linked by antibodies, thus preventing virus uncoating and nuclear entry of viral DNA.


Clinical Cancer Research | 2004

Impact of Human Neutralizing Antibodies on Antitumor Efficacy of an Oncolytic Adenovirus in a Murine Model

Van Tsai; Duane E. Johnson; Amena Rahman; Shu Fen Wen; Drake LaFace; Jennifer Philopena; Jonathan Nery; Monica Zepeda; Daniel C. Maneval; G. William Demers; Robert Ralston

Purpose: The purpose of this study was to assess the impact of anti-adenovirus neutralizing antibodies (AdNAbs) on the distribution, tolerability, and efficacy of intravenously administered oncolytic adenovirus. A translational model was developed to evaluate the impact of humoral immunity on intravenous administration of oncolytic adenovirus in humans. Experimental Design: Initially, severe combined immunodeficient (SCID)/beige mice were passively immunized with various amounts of human sera to establish a condition of preexisting humoral immunity similar to humans. A replication-deficient adenovirus encoding β-galactosidase (rAd-βgal) was injected intravenously into these mice. An AdNAb titer that mitigated galactosidase transgene expression was determined. A xenograft tumor-bearing nude mouse model was developed to assess how a similar in vivo titer would impact the activity of 01/PEME, an oncolytic adenovirus, after intravenous administration. Results: In SCID/beige mice, there was a dose dependence between AdNAbs and galactosidase transgene expression; 90% of transgene expression was inhibited when the titer was 80. A similar titer reconstituted in the nude mice with human serum, as was done in the SCID/beige mice, did not abrogate the antitumor efficacy of the replicating adenovirus after intravenous administration. Viral DNA increased in tumors over time. Conclusions: In intravenous administration, preexisting AdNAb titer of 80 significantly attenuated the activity of a 2.5 × 1012 particles per kilogram dose of nonreplicating adenovirus; the same titer had no affect on the activity of an equivalent dose of replicating adenovirus. Our results suggest that a majority of patients with preexisting adenovirus immunity would be candidates for intravenous administration of oncolytic adenovirus.


Journal of Virology | 2001

Intratumoral Spread and Increased Efficacy of a p53-VP22 Fusion Protein Expressed by a Recombinant Adenovirus

Ken N. Wills; Isabella A. Atencio; Jenny Avanzini; Saskia Neuteboom; Anne Phelan; Jennifer Philopena; Suganto Sutjipto; Mei Vaillancourt; Shu Fen Wen; Robert Ralston; Duane E. Johnson

ABSTRACT In vitro experiments have demonstrated intercellular trafficking of the VP22 tegument protein of herpes simplex virus type 1 from infected cells to neighboring cells, which internalize VP22 and transport it to the nucleus. VP22 also can mediate intercellular transport of fusion proteins, providing a strategy for increasing the distribution of therapeutic proteins in gene therapy. Intercellular trafficking of the p53 tumor suppressor protein was demonstrated in vitro using a plasmid expressing full-length p53 fused in-frame to full-length VP22. The p53-VP22 chimeric protein induced apoptosis both in transfected tumor cells and in neighboring cells, resulting in a widespread cytotoxic effect. To evaluate the anti-tumor activity of p53-VP22 in vivo, we constructed recombinant adenoviruses expressing either wild-type p53 (FTCB) or a p53-VP22 fusion protein (FVCB) and compared their effects in p53-resistant tumor cells. In vitro, treatment of tumor cells with FVCB resulted in enhanced p53-specific apoptosis compared to treatment with equivalent doses of FTCB. However, in normal cells there was no difference in the dose-related cytotoxicity of FVCB compared to that of FTCB. In vivo, treatment of established tumors with FVCB was more effective than equivalent doses of FTCB. The dose-response curve to FVCB was flatter than that to FTCB; maximal antitumor responses could be achieved using FVCB at doses 1 log lower than those obtained with FTCB. Increased antitumor efficacy was correlated with increased distribution of p53 protein in FVCB-treated tumors. This study is the first demonstration that VP22 can enhance the in vivo distribution of therapeutic proteins and improve efficacy in gene therapy.


Journal of Virology | 2008

Neutralizing Antibody Blocks Adenovirus Infection by Arresting Microtubule-Dependent Cytoplasmic Transport

Jason G. Smith; Aurelia Cassany; Larry Gerace; Robert Ralston; Glen R. Nemerow

ABSTRACT Neutralizing antibodies are commonly elicited by viral infection. Most antibodies that have been characterized block early stages of virus entry that occur before membrane penetration, whereas inhibition of late stages in entry that occurs after membrane penetration has been poorly characterized. Here we provide evidence that the neutralizing antihexon monoclonal antibody 9C12 inhibits adenovirus infection by blocking microtubule-dependent translocation of the virus to the microtubule-organizing center following endosome penetration. These studies identify a previously undescribed mechanism by which neutralizing antibodies block virus infection, a situation that may be relevant for other nonenveloped viruses that use microtubule-dependent transport during cell entry.


Nucleic Acids Research | 2009

Identification of HCV protease inhibitor resistance mutations by selection pressure-based method

Ping Qiu; Vincent Sanfiorenzo; Stephanie Curry; Zhuyan Guo; Shaotang Liu; Angela Skelton; Ellen Xia; Constance Cullen; Robert Ralston; Jonathan Greene; Xiao Tong

A major challenge to successful antiviral therapy is the emergence of drug-resistant viruses. Recent studies have developed several automated analyses of HIV sequence polymorphism based on calculations of selection pressure (Ka/Ks) to predict drug resistance mutations. Similar resistance analysis programs for HCV inhibitors are not currently available. Taking advantage of the recently available sequence data of patient HCV samples from a Phase II clinical study of protease inhibitor boceprevir, we calculated the selection pressure for all codons in the HCV protease region (amino acid 1–181) to identify potential resistance mutations. The correlation between mutations was also calculated to evaluate linkage between any two mutations. Using this approach, we identified previously known major resistant mutations, including a recently reported mutation V55A. In addition, a novel mutation V158I was identified, and we further confirmed its resistance to boceprevir in protease enzyme and replicon assay. We also extended the approach to analyze potential interactions between individual mutations and identified three pairs of correlated changes. Our data suggests that selection pressure-based analysis and correlation mapping could provide useful tools to analyze large amount of sequencing data from clinical samples and to identify new drug resistance mutations as well as their linkage and correlations.


ACS Medicinal Chemistry Letters | 2010

Discovery of Narlaprevir (SCH 900518): A Potent, Second Generation HCV NS3 Serine Protease Inhibitor

Ashok Arasappan; Frank Bennett; Stephane L. Bogen; Srikanth Venkatraman; Melissa Blackman; Kevin X. Chen; Siska Hendrata; Yuhua Huang; Regina Huelgas; Latha G. Nair; Angela I. Padilla; Weidong Pan; Russell E. Pike; Patrick A. Pinto; Sumei Ruan; Mousumi Sannigrahi; Francisco Velazquez; Bancha Vibulbhan; Wanli Wu; Weiying Yang; Anil K. Saksena; Viyyoor M. Girijavallabhan; Neng-Yang Shih; Jianshe Kong; Tao Meng; Yan Jin; Jesse Wong; Paul McNamara; Andrew Prongay; Vincent S. Madison

Boceprevir (SCH 503034), 1, a novel HCV NS3 serine protease inhibitor discovered in our laboratories, is currently undergoing phase III clinical trials. Detailed investigations toward a second generation protease inhibitor culminated in the discovery of narlaprevir (SCH 900518), 37, with improved potency (∼10-fold over 1), pharmacokinetic profile and physicochemical characteristics, currently in phase II human trials. Exploration of synthetic sequence for preparation of 37 resulted in a route that required no silica gel purification for the entire synthesis.


Journal of Virology | 2009

Structure-Function Analysis of Human Immunodeficiency Virus Type 1 gp120 Amino Acid Mutations Associated with Resistance to the CCR5 Coreceptor Antagonist Vicriviroc

Robert A. Ogert; Lei Ba; Yan Hou; Catherine Buontempo; Ping Qiu; Jose S. Duca; Nicholas J. Murgolo; Peter Buontempo; Robert Ralston; John A. Howe

ABSTRACT Vicriviroc (VCV) is a small-molecule CCR5 coreceptor antagonist currently in clinical trials for treatment of R5-tropic human immunodeficiency virus type 1 (HIV-1) infection. With this drug in development, identification of resistance mechanisms to VCV is needed to allow optimal outcomes in clinical practice. In this study we further characterized VCV resistance in a lab-adapted, VCV-resistant RU570 virus (RU570-VCVres). We show that K305R, R315Q, and K319T amino acid changes in the V3 loop, along with P437S in C4, completely reproduced the resistance phenotype in a chimeric ADA envelope containing the C2-V5 region from RU570 passage control gp120. The K305R amino acid change primarily impacted the degree of resistance, whereas K319T contributed to both resistance and virus infectivity. The P437S mutation in C4 had more influence on the relative degree of virus infectivity, while the R315Q mutation contributed to the virus concentration-dependent phenotypic resistance pattern observed for RU570-VCVres. RU570-VCVres pseudovirus entry with VCV-bound CCR5 was dramatically reduced by Y10A, D11A, Y14A, and Y15A mutations in the N terminus of CCR5, whereas these mutations had less impact on entry in the absence of VCV. Notably, an additional Q315E/I317F substitution in the crown region of the V3 loop enhanced resistance to VCV, resulting in a stronger dependence on the N terminus for viral entry. By fitting the envelope mutations to a molecular model of a recently described docked N-terminal CCR5 peptide consisting of residues 2 to 15 in complex with HIV-1 gp120 CD4, potential new interactions in gp120 with the N terminus of CCR5 were uncovered. The cumulative results of this study suggest that as the RU570 VCV-resistant virus adapted to use the drug-bound receptor, it also developed an increased reliance on the N terminus of CCR5.

Collaboration


Dive into the Robert Ralston's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Ogert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge