Robert S. Staron
Ohio University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert S. Staron.
Microscopy Research and Technique | 2000
Dirk Pette; Robert S. Staron
Skeletal muscle is an extremely heterogeneous tissue composed of a variety of fast and slow fiber types and subtypes. Moreover, muscle fibers are versatile entities capable of adjusting their phenotypic properties in response to altered functional demands. Major differences between muscle fiber types relate to their myosin complement, i.e., isoforms of myosin light and heavy chains. Myosin heavy chain (MHC) isoforms appear to represent the most appropriate markers for fiber type delineation. On this basis, pure fiber types are characterized by the expression of a single MHC isoform, whereas hybrid fiber type express two or more MHC isoforms. Hybrid fibers bridge the gap between the pure fiber types. The fiber population of skeletal muscles, thus, encompasses a continuum of pure and hybrid fiber types. Under certain conditions, changes can be induced in MHC isoform expression heading in the direction of either fast‐to‐slow or slow‐to‐fast. Increased neuromuscular activity, mechanical loading, and hypothyroidism are conditions that induce fast‐to‐slow transitions, whereas reduced neuromuscular activity, mechanical unloading, and hyperthyroidism cause transitions in the slow‐to‐fast direction. Microsc. Res. Tech. 50:500–509, 2000.
International Review of Cytology-a Survey of Cell Biology | 1997
Dirk Pette; Robert S. Staron
Mammalian skeletal muscle is an extremely heterogeneous tissue, composed of a large variety of fiber types. These fibers, however, are not fixed units but represent highly versatile entities capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This adaptive responsiveness is the basis of fiber type transitions. The fiber population of a given muscle is in a dynamic state, constantly adjusting to the current conditions. The full range of adaptive ability spans fast to slow characteristics. However, it is now clear that fiber type transitions do not proceed in immediate jumps from one extreme to the other, but occur in a graded and orderly sequential manner. At the molecular level, the best examples of these stepwise transitions are myofibrillar protein isoform exchanges. For the myosin heavy chain, this entails a sequence going from the fastest (MHCIIb) to the slowest (MHCI) isoform, and vice-versa. Depending on the basal protein isoform profile and hence the position within the fast-slow spectrum, the adaptive ranges of different fibers vary. A simple transition scheme has emerged from the multitude of data collected on fiber type conversions under a variety of conditions.
Histochemistry and Cell Biology | 2001
Dirk Pette; Robert S. Staron
Abstract. Skeletal muscle is a complex, versatile tissue composed of a large variety of functionally diverse fiber types. The overall properties of a muscle largely result from a combination of the individual properties of its different fiber types and their proportions. Skeletal muscle fiber types, which can be delineated according to various parameters, for example, myofibrillar protein isoforms, metabolic enzyme profiles, and structural and contractile properties, are not fixed units but are capable of responding to altered functional demands and a variety of signals by changing their phenotypic profiles. This brief review summarizes our current understanding of the delineation of fiber types, modulations of their phenotypic profiles as induced under various conditions, and potential mechanisms involved in these transitions.
Journal of Histochemistry and Cytochemistry | 2000
Robert S. Staron; Fredrick C. Hagerman; Robert S. Hikida; Thomas F. Murray; David P. Hostler; Mathew T. Crill; Kerry E. Ragg; Kumika Toma
SUMMARY This study presents data collected over the past 10 years on the muscle fiber type composition of the vastus lateralis muscle of young men and women. Biopsies were taken from the vastus lateralis muscle of 55 women (21.2 ± 2.2 yr) and 95 men (21.5 ± 2.4 yr) who had volunteered to participate in various research projects. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were classified using mATPase histochemistry, and cross-sectional area was measured for the major fiber types (I, IIA, and IIB). Myosin heavy chain (MHC) content was determined electrophoretically on all of the samples from the men and on 26 samples from the women. With the exception of fiber Type IC, no significant differences were found between men and women for muscle fiber type distribution. The vastus lateralis muscle of both the men and women contained approximately 41% I, 1% IC, 1% IIC, 31% IIA, 6% IIAB, and 20% IIB. However, the cross-sectional area of all three major fiber types was larger for the men compared to the women. In addition, the Type IIA fibers were the largest for the men, whereas the Type I fibers tended to be the largest for the women. Therefore, gender differences were found with regard to the area occupied by each specific fiber type: IIA>I>IIB for the men and I>IIA>IIB for the women. These data establish normative values for the mATPase-based fiber type distribution and sizes in untrained young men and women.
Medicine and Science in Sports and Exercise | 1999
Jeff S. Volek; Noel D. Duncan; Scott A. Mazzetti; Robert S. Staron; Margot Putukian; Ana L. Gómez; David R. Pearson; W. J. Fink; William J. Kraemer
PURPOSE The purpose of this study was to examine the effect of creatine supplementation in conjunction with resistance training on physiological adaptations including muscle fiber hypertrophy and muscle creatine accumulation. METHODS Nineteen healthy resistance-trained men were matched and then randomly assigned in a double-blind fashion to either a creatine (N = 10) or placebo (N = 9) group. Periodized heavy resistance training was performed for 12 wk. Creatine or placebo capsules were consumed (25 g x d(-1)) for 1 wk followed by a maintenance dose (5 g x d(-1)) for the remainder of the training. RESULTS After 12 wk, significant (P < or = 0.05) increases in body mass and fat-free mass were greater in creatine (6.3% and 6.3%, respectively) than placebo (3.6% and 3.1%, respectively) subjects. After 12 wk, increases in bench press and squat were greater in creatine (24% and 32%, respectively) than placebo (16% and 24%, respectively) subjects. Compared with placebo subjects, creatine subjects demonstrated significantly greater increases in Type I (35% vs 11%), IIA (36% vs 15%), and IIAB (35% vs 6%) muscle fiber cross-sectional areas. Muscle total creatine concentrations were unchanged in placebo subjects. Muscle creatine was significantly elevated after 1 wk in creatine subjects (22%), and values remained significantly greater than placebo subjects after 12 wk. Average volume lifted in the bench press during training was significantly greater in creatine subjects during weeks 5-8. No negative side effects to the supplementation were reported. CONCLUSION Creatine supplementation enhanced fat-free mass, physical performance, and muscle morphology in response to heavy resistance training, presumably mediated via higher quality training sessions.
European Journal of Applied Physiology | 1990
Robert S. Staron; E. S. Malicky; M. J. Leonardi; J. E. Falkel; Fredrick C. Hagerman; Gary A. Dudley
SummaryTwenty-four women completed a 20-week heavy-resistance weight training program for the lower extremity. Workouts were twice a week and consisted of warm-up exercises followed by three sets each of full squats, vertical leg presses, leg extensions, and leg curls. All exercises were performed to failure using 6–8 RM (repetition maximum). Weight training caused a significant increase in maximal isotonic strength (1 RM) for each exercise. After training, there was a decrease in body fat percentage (p<0.05), and an increase in lean body mass (p<0.05) with no overall change in thigh girth. Biopsies were obtained before and after training from the superficial portion of the vastus lateralis muscle. Sections were prepared for histological and histochemical examination. Six fiber types (1, IC, IIC, IIA, IIAB, and IIB) were distinguished following routine myofibrillar adenosine triphosphatase histochemistry. Areas were determined for fiber types 1, IIA, and IIAB + IIB. The heavy-resistance training resulted in significant hypertrophy of all three groups: I (15%), IIA (45%), and IIAB + IIB (57%). These data are similar to those in men and suggest considerable hypertrophy of all major fiber types is also possible in women if exercise intensity and duration are sufficient. In addition, the training resulted in a significant decrease in the percentage of IIB with a concomitant increase in IIA fibers, suggesting that strength training may lead to fiber conversions.
Histochemistry and Cell Biology | 1989
Angelika Termin; Robert S. Staron; Dirk Pette
SummaryCombined histochemical and biochemical analyses were performed on rat skeletal muscles in order to determine the myosin heavy chain patterns in specific fiber types. Four myosin heavy chain isoforms were separated by gradient polyacrylamide gel electrophoresis of extracts from single fibers and whole muscle homogenates. Their electrophoretic mobility increased in the order HCIIa, HCIIb, and HCI. HCIIa, HCIIb and HCI were present as unique isoforms in histochemically defined fiber types IIA, IIB and I, respectively. The isoforms HCI and HCIIa coexisted at variable ratios in type IC and IIC fibers. An additional fast myosin heavy chain isoform with an electrophoretic mobility between HCIIa and HCIIb was designated as HCIId because of its abundance in fast fibers of large diameter in the diaphragm. With the exception of slight differences in mATPase staining intensity after acid preincubation, these fibers were almost indistinguishable from type IIB fibers. In view of their specific myosin heavy chain composition (HCIId), these fibers were named type IID. In the extensor digitorum longus muscle, type IID fibers were of smaller size than type IIB and differed from the latter by higher NADH tetrazolium reductase activities. Circumstantial evidence suggests that type IID fibers are identical with the 2X fibers, previously described by Schiaffino et al. (1986).
Journal of the Neurological Sciences | 1983
Robert S. Hikida; Robert S. Staron; Fredrick C. Hagerman; William M. Sherman; David L. Costill
This study describes the events occurring in exercise-induced muscular necrosis. Biopsies of the gastrocnemius muscles of volunteer human marathon runners were extracted prior to and at intervals for 7 days following a marathon, and investigated ultrastructurally. Most of the preparations, including the pre-marathon samples, showed evidence of muscle fiber necrosis and inflammation. These preparations had many mitochondria, erythrocytes, leukocytes and other phagocytic cells within the extracellular and extravascular spaces. Less frequently observed were Z-line streaming and degeneration, contracture knots, disrupted sarcolemma, presence of erythrocytes within the muscle fibers, and empty basal lamina tubes in which the contents of the fibers and the sarcolemma had broken down to leave only the basal lamina outlining the former fiber. These abnormal conditions were most prevalent at 1 and 3 days after the marathon. These ultrastructural changes are compared and correlated with the reports of clinical manifestations of rhabdomyolysis and myoglobinuria. Because the abnormalities persist for the 7 day duration of these observations, and because many of these were observed in the pre-marathon biopsies, we conclude that both the intensive training for, and the marathon itself, induce inflammation and fiber necrosis which are manifested in the clinical symptoms for rhabdomyolysis and myoglobinuria. The inflammatory reaction that accompanies these activities may be a major factor in post-exercise soreness. The combined influences of training and necrosis are discussed in relation to muscle fiber type compositions of endurance athletes.
Histochemistry and Cell Biology | 1986
Robert S. Staron; Dirk Pette
SummaryCombined histochemical and biochemical analyses were performed on single fibers of rabbit soleus muscle. Histochemically, four fiber types (I, IC, IIC, IIA) were defined. Of these, types I and IIA were separate, histochemically homogeneous groups. A heterogeneous C fiber population exhibited a continuum of staining intensities between types I and IIA. Microelectrophoretic analyses of specific, histochemically defined fibers revealed that type I fibers contained exclusively HCI, whereas type IIA fibers contained only HCIIa. The C fibers were characterized by the coexistence of both heavy chains in varying ratios, type HC with a predominance of HCI and type IIC with a predominance of HCIIa. A direct correlation existed between the myosin heavy chain composition and the histochemical mATPase staining and was especially evident in the C fiber population with its variable HCI/HCIIa ratio. This correlation did not apply to the myosin light chain complement.
European Journal of Applied Physiology | 1998
William J. Kraemer; Robert S. Staron; Fredrick C. Hagerman; Robert S. Hikida; Andrew C. Fry; Scott E. Gordon; Bradley C. Nindl; Lincoln A. Gothshalk; Jeff S. Volek; James O. Marx; Robert U Newton; Keijo Häkkinen
This investigation examined hormonal adaptations to acute resistance exercise and determined whether training adaptations are observed within an 8-week period in untrained men and women. The protocol consisted of a 1-week pre-conditioning orientation phase followed by 8 weeks of heavy resistance training. Three lower-limb exercises for the quadriceps femoris muscle group (squat, leg press, knee extension) were performed twice a week (Monday and Friday) with every other Wednesday used for maximal dynamic 1 RM strength testing. Blood samples were obtained pre-exercise (Pre-Ex), immediately post-exercise (IP), and 5 min post-exercise (5-P) during the first week of training (T-1), after 6 weeks (T-2) and 8 weeks (T-3) of training to determine blood concentrations of whole-blood lactate (LAC), serum total testosterone (TT), sex-hormone binding globulin (SHBG), cortisol (CORT) and growth hormone (GH). Serum TT concentrations were significantly (P ≤ 0.05) higher for men at all time points measured. Men did not demonstrate an increase due to exercise until T-2. An increase in pre-exercise concentrations of TT were observed both for men and women at T-2 and T-3. No differences were observed for CORT between men and women; increases in CORT above pre-exercise values were observed for men at all training phases and at T-2 and T-3 for women. A reduction in CORT concentrations at rest was observed both in men and women at T-3. Women demonstrated higher pre-exercise GH values than men at all training phases; no changes with training were observed for GH concentrations. Exercise-induced increases in GH above pre-exercise values were observed at all phases of training. Women demonstrated higher serum concentrations of SHBG at all time points. No exercise-induced increases were observed in men over the training period but women increased SHBG with exercise at T-3. SHBG concentrations in women were also significantly higher at T-2 and T-3 when compared to T-1 values. Increases in LAC concentrations due to exercise were observed both for men and women for all training phases but no significant differences were observed with training. These data illustrate that untrained individuals may exhibit early-phase endocrine adaptations during a resistance training program. These hormonal adaptations may influence and help to mediate other adaptations in the nervous system and muscle fibers, which have been shown to be very responsive in the early phase of strength adaptations with resistance training.